# Global Positioning System (GPS) Standard Positioning Service (SPS) Performance Analysis Report

### **Submitted To**

Federal Aviation Administration

GPS Product Team

1284 Maryland Avenue SW

Washington, DC 20024

Report #99

October 31, 2017

Reporting Period: 1 July – 30 September 2017

Submitted by

William J. Hughes Technical Center

WAAS T&E Team

Atlantic City International Airport, NJ 08405

### **Executive Summary**

The GPS Product Team has tasked the Navigation Systems Verification and Monitoring Branch at the William J. Hughes Technical Center to document the Global Positioning System (GPS) Standard Positioning Service (SPS) performance in quarterly GPS Performance Analysis (PAN) Reports. The report contains the analysis performed on data collected at twenty-eight Wide Area Augmentation System (WAAS) Reference Stations. This analysis verifies the GPS SPS performance as compared to the performance parameters stated in the SPS Specification (September 2008).

This report, Report #99, includes data collected from 1 July through 30 September 2017. The next quarterly report will be issued January 31, 2018.

Analysis of this data includes the following standards and categories: PDOP Availability, NANU Summary and Evaluation, Service Availability, Position and Range Accuracy and Solar Storm Effects on GPS SPS performance.

PDOP availability is based on Position Dilution of Precision (PDOP). Utilizing the weekly almanac posted on the US Coast Guard navigation web site, the coverage for every 5° grid point between 180W to 180E and 80S and 80N was calculated for every minute over a 24-hour period for each of the weeks covered in the reporting period. For this reporting period, the global availability based on PDOP less than six for CONUS was 99.993%.

NANU summary and evaluation was achieved by reviewing the "Notice: Advisory to Navstar Users" (NANU) reports issued between 1 July and 30 September 2017. Using this data, we compute a set of statistics that give a relative idea of constellation health for both the current and combined history of past quarters. A total of fifteen outages were reported in the NANU's this quarter. Ten outages were scheduled ahead of time, while five unscheduled NANUs occurred.

The quarterly service availability standard was verified using 24-hour position accuracy values computed from data collected at one-second intervals. All of the sites achieved a 100% availability, which exceeds the SPS "average location" value of 99% and the "worst-case location" value of 90%.

Calculating the 24-hour 95% horizontal and vertical position error values verified the accuracy standards. The User Range Error standard was verified for each satellite from 24-hour accuracy values computed using data collected at the following six sites: Boston, Honolulu, Los Angeles, Miami, San Juan and Juneau. This data was also collected in one-second samples. All sites achieved 100% reliability, meeting the SPS specification. The maximum range error recorded was 20.740 meters on Satellite PRN 15. The SPS specification states that the range error should never exceed 30 meters for less than 99.79% of the day for a worst-case point and 99.94% globally. The maximum RMS range error value of 2.162 meters was recorded on satellite PRN 22. The SPS specification states that RMS URE cannot exceed 6 meters in any 24-hour interval.

Geomagnetic storms had little to no effect on GPS performance this quarter. All sites met all GPS Standard Positioning Service (SPS) specifications on those days with the most significant solar activity.

The IGS is a voluntary federation of many worldwide agencies that pool resources and permanent GNSS station data to generate precise GNSS products. During the evaluation period, the maximum 95% horizontal and vertical SPS errors were 3.46 meters at Maspalomas, Spain and 7.59 meters at Kourou, French Guyana respectively.

From the analysis performed on data collected between 1 July and 30 September 2017, the GPS performance met all SPS requirements that were evaluated.

# **Table of Contents**

| List of | f Figures                                             | 4  |
|---------|-------------------------------------------------------|----|
| List of | f Tables                                              | 9  |
| 1 I     | Introduction                                          | 10 |
| 1.1     | Objective of GPS SPS Performance Analysis Report      | 10 |
| 1.2     | Report Overview                                       | 11 |
| 1.3     | Summary of Performance Requirements and Metrics       | 11 |
| 2 F     | PDOP Availability Standard                            | 16 |
| 3 1     | NANU Summary and Evaluation                           | 19 |
| 3.1     | Satellite Outages from NANU Reports                   | 19 |
| 3.2     | Service Availability Standard                         | 22 |
| 4 5     | Service Reliability Standard                          | 24 |
| 5 A     | Accuracy Standard                                     | 25 |
| 5.1     | Position Accuracy                                     | 26 |
| 5.2     | Time Transfer Accuracy                                | 28 |
| 5.3     | Range Domain Accuracy                                 | 29 |
| 6 5     | Solar Storms                                          | 35 |
| 7 I     | GS Data                                               | 38 |
| 8 F     | RAIM Performance                                      | 41 |
| 8.1     | Site Performance                                      | 41 |
| 8.2     | RAIM Coverage                                         | 42 |
| 8.3     | RAIM Airport Analysis                                 | 45 |
| 9 (     | GPS Test NOTAMs Summary                               | 49 |
| 9.1     | GPS Test NOTAMs Issued                                | 49 |
| 9.2     | Tracking and Trending of GPS Test NOTAMs              | 49 |
| 9.3     | GPS Availability                                      | 52 |
| 10 A    | Appendices                                            | 57 |
| 10.1    | 1 Appendix A: Performance Summary                     | 57 |
| 10.2    | 2 Appendix B: Geomagnetic Data                        | 60 |
| 10.3    | Appendix C: Performance Analysis (PAN) Problem Report | 62 |

| 10.4    | Appendix D: Glossary                                                           | 63 |
|---------|--------------------------------------------------------------------------------|----|
| 11 G    | PS Broadcast Orbit Versus NGA Precise Orbits and URA (IAURA) Bounding Analyses | 1  |
| 0       | rbit Error Plots for All Satellites                                            | 9  |
| QQ Plo  | ts of URA Normalized Error for All Satellites                                  | 34 |
| Histogr | am Plost of H, A, C, and Range Error for All Satellites                        | 40 |
| Timelin | e of URA Normalized Range Error for All Satellites                             | 64 |
|         |                                                                                |    |

# **List of Figures**

| Figure 2-1 World GPS Maximum PDOP                                       | 17 |
|-------------------------------------------------------------------------|----|
| Figure 2-2 Satellite Visibility Profile for Worst-Case Point            | 18 |
| Figure 5-1 Global Vertical Error Histogram                              | 27 |
| Figure 5-2 Global Horizontal Error Histogram                            | 27 |
| Figure 5-3 Time Transfer Error                                          | 28 |
| Figure 5-4 Distribution of Daily Max Range Errors                       | 32 |
| Figure 5-5 Distribution of Daily Max Range Rate Errors                  | 32 |
| Figure 5-6 Distribution of Daily max Range Acceleration Errors          | 33 |
| Figure 5-7 Range Error Histogram                                        | 33 |
| Figure 5-8 Maximum Range Error Per Satellite                            | 34 |
| Figure 5-9 Maximum Range Rate Error Per Satellite                       | 34 |
| Figure 5-10 Maximum Range Acceleration Error Per Satellite              | 34 |
| Figure 6-1 K-Index for 7-9 September 2017                               | 36 |
| Figure 6-2 K-Index for 27-29 September 2017                             | 36 |
| Figure 6-3 K-Index for 15-17 July 2017                                  | 36 |
| Figure 7-1 Selected IGS Site Locations                                  | 39 |
| Figure 7-2 GPS SPS 95% Horizontal Accuracy Trends at Selected IGS Sites | 40 |
| Figure 7-3 GPS SPS 95% Vertical Accuracy Trends at Selected IGS Sites   | 40 |
| Figure 8-1 RAIM RNP 0.1 Coverage                                        | 43 |
| Figure 8-2 RAIM RNP 0.3 Coverage                                        | 43 |
| Figure 8-3 RAIM World Wide Coverage Trend                               | 44 |
| Figure 8-4 RAIM RNP Coverage Trend for WAAS NPA Service Area            | 44 |
| Figure 8-5 RAIM RNP 0.1 Airport Availability                            | 45 |
| Figure 8-6 RAIM RNP 0.3 Airport Availability                            | 46 |
| Figure 8-7 RAIM RNP 0.1 Airport Outages                                 | 47 |
| Figure 8-8 RAIM RNP 0.3 Airport Outages                                 | 48 |
| Figure 9-1 GPS Test NOTAMs @ FL400                                      | 50 |

| Figure 9-2 GPS NOTAMs @ FL250                                                    | 50 |
|----------------------------------------------------------------------------------|----|
| Figure 9-3 GPS NOTAMs @ 10k Feet                                                 | 51 |
| Figure 9-4 GPS NOTAMs @ 4k Feet                                                  | 51 |
| Figure 9-5 GPS NOTAMs @ 50 Feet                                                  | 51 |
| Figure 11-1 GPS Broadcast Orbit Accuracy Standard Deviation Plots                | 3  |
| Figure 11-1 GPS Broadcast Orbit Accuracy Standard Deviations Using C/A Nav Data  | 3  |
| Figure 11-2 GPS Broadcast Orbit Accuracy Standard Deviations Using L2C CNAV Data | 3  |
| Figure 11-3 GPS Broadcast Orbit Error Means Using C/A Nav Data                   | 4  |
| Figure 11-4 GPS Broadcast Orbit Error Means Using L2C CNAV Data                  | 4  |
| Figure 11-5 Broadcast Ephemeris vs. NGA Precise Data Availability Plots          | 5  |
| Figure 11-6 Current GPS Constellation                                            |    |
| Figure 11-7 URA Over-bounding Using C/A Nav Data                                 | 7  |
| Figure 11-8 IAURA Over-bounding Using L2C CNAV Data                              | 8  |
| Figure 11-9 Orbit Error PRN-1 (SVN-63) Using C/A Nav Data                        | 9  |
| Figure 11-10 Orbit Error PRN-1 (SVN-63) Using L2C CNAV Data                      | 9  |
| Figure 11-11 Orbit Error PRN-2 (SVN-61) Using C/A Nav Data                       | 10 |
| Figure 11-12 Orbit Error PRN-3 (SVN-69) Using C/A Nav Data                       | 10 |
| Figure 11-13 Orbit Error PRN-3 (SVN-69) Using L2C CNAV Data                      |    |
| Figure 11-14 Orbit Error PRN-5 (SVN-50) Using C/A Nav Data                       |    |
| Figure 11-15 Orbit Error PRN-5 (SVN-50) Using L2C CNAV Data                      | 12 |
| Figure 11-16 Orbit Error PRN-6 (SVN-67) Using C/A Nav Data                       | 12 |
| Figure 11-17 Orbit Error PRN-6 (SVN-67) Using L2C CNAV Data                      | 13 |
| Figure 11-18 Orbit Error PRN-7 (SVN-48) Using C/A Nav Data                       |    |
| Figure 11-19 Orbit Error PRN-7 (SVN-48) Using L2C CNAV Data                      | 14 |
| Figure 11-20 Orbit Error PRN-8 (SVN-72) Using C/A Nav Data                       |    |
| Figure 11-21 Orbit Error PRN-8 (SVN-72) Using L2C CNAV Data                      | 15 |
| Figure 11-22 Orbit Error PRN-9 (SVN-68) Using C/A Nav Data                       | 15 |
| Figure 11-23 Orbit Error PRN-9 (SVN-68) Using L2C CNAV Data                      | 16 |
| Figure 11-24 Orbit Error PRN-10 (SVN-73) Using C/A Nav Data                      | 16 |
| Figure 11-25 Orbit Error PRN-10 (SVN-73) Using L2C CNAV Data                     | 17 |
| Figure 11-26 Orbit Error PRN-11 (SVN-46) Using C/A Nav Data                      | 17 |
| Figure 11-27 Orbit Error PRN-12 (SVN-58) Using C/A Nav Data                      | 18 |
| Figure 11-28 Orbit Error PRN-12 (SVN-58) Using L2C CNAV Data                     | 18 |
| Figure 11-29 Orbit Error PRN-13 (SVN-43) Using C/A Nav Data                      | 19 |
| Figure 11-30 Orbit Error PRN-14 (SVN-41) Using C/A Nav Data                      | 19 |
| Figure 11-31 Orbit Error PRN-15 (SVN-55) Using C/A Nav Data                      | 20 |
| Figure 11-32 Orbit Error PRN-15 (SVN-55) Using L2C CNAV Data                     | 20 |
| Figure 11-33 Orbit Error PRN-16 (SVN-56) Using C/A Nav Data                      | 21 |
| Figure 11-34 Orbit Error PRN-17 (SVN-53) Using C/A Nav Data                      | 21 |
| Figure 11-35 Orbit Error PRN-17 (SVN-53) Using L2C CNAV Data                     | 22 |
| Figure 11-36 Orbit Error PRN-18 (SVN-54) Using C/A Nav Data                      | 22 |

| Figure 11-37 Orbit Error PRN-19 (SVN-59) Using C/A Nav Data                            | 23 |
|----------------------------------------------------------------------------------------|----|
| Figure 11-38 Orbit Error PRN-20 (SVN-51) Using C/A Nav Data                            | 23 |
| Figure 11-39 Orbit Error PRN-21 (SVN-45) Using C/A Nav Data                            | 24 |
| Figure 11-40 Orbit Error PRN-22 (SVN-47) Using C/A Nav Data                            | 24 |
| Figure 11-41 Orbit Error PRN-23 (SVN-60) Using C/A Nav Data                            | 25 |
| Figure 11-42 Orbit Error PRN-24 (SVN-65) Using C/A Nav Data                            | 25 |
| Figure 11-43 Orbit Error PRN-24 (SVN-65) Using L2C CNAV Data                           | 26 |
| Figure 11-44 Orbit Error PRN-25 (SVN-62) Using C/A Nav Data                            | 26 |
| Figure 11-45 Orbit Error PRN-25 (SVN-62) Using L2C CNAV Data                           | 27 |
| Figure 11-46 Orbit Error PRN-26 (SVN-71) Using C/A Nav Data                            | 27 |
| Figure 11-47 Orbit Error PRN-26 (SVN-71) Using L2C CNAV Data                           | 28 |
| Figure 11-48 Orbit Error PRN-27 (SVN-66) Using C/A Nav Data                            | 28 |
| Figure 11-49 Orbit Error PRN-27 (SVN-66) Using L2C CNAV Data                           |    |
| Figure 11-50 Orbit Error PRN-28 (SVN-44) Using C/A Nav Data                            | 29 |
| Figure 11-51 Orbit Error PRN-29 (SVN-57) Using C/A Nav Data                            |    |
| Figure 11-52 Orbit Error PRN-29 (SVN-57) Using L2C CNAV Data                           | 30 |
| Figure 11-53 Orbit Error PRN-30 (SVN-64) Using C/A Nav Data                            | 31 |
| Figure 11-54 Orbit Error PRN-30 (SVN-64) Using L2C CNAV Data                           | 31 |
| Figure 11-55 Orbit Error PRN-31 (SVN-52) Using C/A Nav Data                            | 32 |
| Figure 11-56 Orbit Error PRN-31 (SVN-52) Using L2C CNAV Data                           |    |
| Figure 11-57 Orbit Error PRN-32 (SVN-70) Using C/A Nav Data                            | 33 |
| Figure 11-58 Orbit Error PRN-32 (SVN-70) Using L2C CNAV Data                           |    |
| Figure 11-59 QQ Plots of Range Error PRNs 1 to 5 Using C/A Nav Data                    |    |
| Figure 11-60 QQ Plots of Range Error PRNs 6 to 9 Using C/A Nav Data                    | 34 |
| Figure 11-61 QQ Plots of Range Error PRNs 10 to 13 Using C/A Nav Data                  | 35 |
| Figure 11-62 QQ Plots of Range Error PRNs 14 to 17 Using C/A Nav Data                  | 35 |
| Figure 11-63 QQ Plots of Range Error PRNs 18 to 21 Using C/A Nav Data                  |    |
| Figure 11-64 QQ Plots of Range Error PRNs 22 to 25 Using C/A Nav Data                  | 36 |
| Figure 11-65 QQ Plots of Range Error PRNs 26 to 29 Using C/A Nav Data                  | 37 |
| Figure 11-66 QQ Plots of Range Error PRNs 30 to 32 Using C/A Nav Data                  | 37 |
| Figure 11-67 QQ Plots of Range Error PRNs 5, 6, 7, and 8 Using L2C CNAV Data           | 38 |
| Figure 11-68 QQ Plots of Range Error PRNs 9, 10, 12, and 15 Using L2C CNAV Data        | 38 |
| Figure 11-69 QQ Plots of Range Error PRNs 17, 24, 25, and 26 Using L2C CNAV Data       | 39 |
| Figure 11-70 QQ Plots of Range Error PRNs 27, 29, 30, and 32 Using L2C CNAV Data       | 39 |
| Figure 11-71 Histograms of H, A, C, and Range Error PRN-1 (SVN-63) Using C/A Nav Data  | 40 |
| Figure 11-72 Histograms of H, A, C, and Range Error PRN-2 (SVN-61) Using C/A Nav Data  | 40 |
| Figure 11-73 Histograms of H, A, C, and Range Error PRN-3 (SVN-69) Using C/A Nav Data  | 41 |
| Figure 11-74 Histograms of H, A, C, and Range Error PRN-5 (SVN-50) Using C/A Nav Data  | 41 |
| Figure 11-75 Histograms of H, A, C, and Range Error PRN-5 (SVN-50) Using L2C CNAV Data | 42 |
| Figure 11-76 Histograms of H, A, C, and Range Error PRN-6 (SVN-67) Using C/A Nav Data  | 42 |
| Figure 11-77 Histograms of H, A, C, and Range Error PRN-6 (SVN-67) Using L2C CNAV Data | 43 |

| Figure 11-78 Histograms of H, A, C, and Range Error PRN-7 (SVN-48) Using C/A Nav Data    | 43 |
|------------------------------------------------------------------------------------------|----|
| Figure 11-79 Histograms of H, A, C, and Range Error PRN-7 (SVN-48) Using L2C CNAV Data   | 44 |
| Figure 11-80 Histograms of H, A, C, and Range Error PRN-8 (SVN-72) Using C/A Nav Data    | 44 |
| Figure 11-81 Histograms of H, A, C, and Range Error PRN-8 (SVN-72) Using L2C CNAV Data   | 45 |
| Figure 11-82 Histograms of H, A, C, and Range Error PRN-9 (SVN-68) Using C/A Nav Data    | 45 |
| Figure 11-83 Histograms of H, A, C, and Range Error PRN-9 (SVN-68) Using L2C CNAV Data   | 46 |
| Figure 11-84 Histograms of H, A, C, and Range Error PRN-10 (SVN-73) Using C/A Nav Data   | 46 |
| Figure 11-85 Histograms of H, A, C, and Range Error PRN-10 (SVN-73) Using L2C CNAV Data  | 47 |
| Figure 11-86 Histograms of H, A, C, and Range Error PRN-11 (SVN-46) Using C/A Nav Data   | 47 |
| Figure 11-87 Histograms of H, A, C, and Range Error PRN-12 (SVN-58) Using C/A Nav Data   | 48 |
| Figure 11-88 Histograms of H, A, C, and Range Error PRN-12 (SVN-58) Using L2C CNAV Data  | 48 |
| Figure 11-89 Histograms of H, A, C, and Range Error PRN-13 (SVN-43) Using C/A Nav Data   | 49 |
| Figure 11-90 Histograms of H, A, C, and Range Error PRN-14 (SVN-41) Using C/A Nav Data   | 49 |
| Figure 11-91 Histograms of H, A, C, and Range Error PRN-15 (SVN-55) Using C/A Nav Data   | 50 |
| Figure 11-92 Histograms of H, A, C, and Range Error PRN-15 (SVN-55) Using L2C CNAV Data  | 50 |
| Figure 11-93 Histograms of H, A, C, and Range Error PRN-16 (SVN-56) Using C/A Nav Data   | 51 |
| Figure 11-94 Histograms of H, A, C, and Range Error PRN-17 (SVN-53) Using C/A Nav Data   | 51 |
| Figure 11-95 Histograms of H, A, C, and Range Error PRN-17 (SVN-53) Using L2C CNAV Data  | 52 |
| Figure 11-96 Histograms of H, A, C, and Range Error PRN-18 (SVN-54) Using C/A Nav Data   | 52 |
| Figure 11-97 Histograms of H, A, C, and Range Error PRN-19 (SVN-59) Using C/A Nav Data   | 53 |
| Figure 11-98 Histograms of H, A, C, and Range Error PRN-20 (SVN-51) Using C/A Nav Data   | 53 |
| Figure 11-99 Histograms of H, A, C, and Range Error PRN-21 (SVN-45) Using C/A Nav Data   | 54 |
| Figure 11-100 Histograms of H, A, C, and Range Error PRN-22 (SVN-47) Using C/A Nav Data  | 54 |
| Figure 11-101 Histograms of H, A, C, and Range Error PRN-23 (SVN-60) Using C/A Nav Data  | 55 |
| Figure 11-102 Histograms of H, A, C, and Range Error PRN-24 (SVN-65) Using C/A Nav Data  | 55 |
| Figure 11-103 Histograms of H, A, C, and Range Error PRN-24 (SVN-65) Using L2C CNAV Data | 56 |
| Figure 11-104 Histograms of H, A, C, and Range Error PRN-25 (SVN-62) Using C/A Nav Data  | 56 |
| Figure 11-105 Histograms of H, A, C, and Range Error PRN-25 (SVN-62) Using L2C CNAV Data | 57 |
| Figure 11-106 Histograms of H, A, C, and Range Error PRN-26 (SVN-71) Using C/A Nav Data  | 57 |
| Figure 11-107 Histograms of H, A, C, and Range Error PRN-26 (SVN-71) Using L2C CNAV Data | 58 |
| Figure 11-108 Histograms of H, A, C, and Range Error PRN-27 (SVN-66) Using C/A Nav Data  | 58 |
| Figure 11-109 Histograms of H, A, C, and Range Error PRN-27 (SVN-66) Using L2C CNAV Data | 59 |
| Figure 11-110 Histograms of H, A, C, and Range Error PRN-28 (SVN-44) Using C/A Nav Data  | 59 |
| Figure 11-111 Histograms of H, A, C, and Range Error PRN-29 (SVN-57) Using C/A Nav Data  | 60 |
| Figure 11-112 Histograms of H, A, C, and Range Error PRN-29 (SVN-57) Using L2C CNAV Data | 60 |
| Figure 11-113 Histograms of H, A, C, and Range Error PRN-30 (SVN-64) Using C/A Nav Data  | 61 |
| Figure 11-114 Histograms of H, A, C, and Range Error PRN-30 (SVN-64) Using L2C CNAV Data | 61 |
| Figure 11-115 Histograms of H, A, C, and Range Error PRN-31 (SVN-52) Using C/A Nav Data  | 62 |
| Figure 11-116 Histograms of H, A, C, and Range Error PRN-32 (SVN-70) Using C/A Nav Data  | 62 |
| Figure 11-117 Histograms of H, A, C, and Range Error PRN-32 (SVN-70) Using L2C CNAV Data | 63 |
| Figure 11-118 Timeline of URA Normalized Range Error PRN-1 (SVN-63) Using C/A Nav Data   | 64 |

| Figure 11-119 Timeline of URA Normalized Range Error PRN-2 (SVN-61) Using C/A Nav Data   | 64   |
|------------------------------------------------------------------------------------------|------|
| Figure 11-120 Timeline of URA Normalized Range Error PRN-3 (SVN-69) Using C/A Nav Data   | 65   |
| Figure 11-121 Timeline of URA Normalized Range Error PRN-5 (SVN-50) Using C/A Nav Data   | 65   |
| Figure 11-122 Timeline of IAURA Normalized Range Error PRN-5 (SVN-50) Using L2C CNAV Dat | a66  |
| Figure 11-123 Timeline of URA Normalized Range Error PRN-6 (SVN-67) Using C/A Nav Data   | 66   |
| Figure 11-124 Timeline of IAURA Normalized Range Error PRN-6 (SVN-67) Using L2C CNAV Dat | a67  |
| Figure 11-125 Timeline of URA Normalized Range Error PRN-7 (SVN-48) Using C/A Nav Data   | 67   |
| Figure 11-126 Timeline of IAURA Normalized Range Error PRN-7 (SVN-48) Using L2C CNAV Dat | a68  |
| Figure 11-127 Timeline of URA Normalized Range Error PRN-8 (SVN-72) Using C/A Nav Data   | 68   |
| Figure 11-128 Timeline of IAURA Normalized Range Error PRN-8 (SVN-72) Using L2C CNAV Dat | a69  |
| Figure 11-129 Timeline of URA Normalized Range Error PRN-9 (SVN-68) Using C/A Nav Data   | 69   |
| Figure 11-130 Timeline of IAURA Normalized Range Error PRN-9 (SVN-68) Using L2C CNAV Dat | a70  |
| Figure 11-131 Timeline of URA Normalized Range Error PRN-10 (SVN-73) Using C/A Nav Data  | 70   |
| Figure 11-132 Timeline of IAURA Normalized Range Error PRN-10 (SVN-73) Using L2C CNAV Da | ta71 |
| Figure 11-133 Timeline of URA Normalized Range Error PRN-11 (SVN-46) Using C/A Nav Data  | 71   |
| Figure 11-134 Timeline of URA Normalized Range Error PRN-12 (SVN-58) Using C/A Nav Data  | 72   |
| Figure 11-135 Timeline of IAURA Normalized Range Error PRN-12 (SVN-58) Using L2C CNAV Da | ta72 |
| Figure 11-136 Timeline of URA Normalized Range Error PRN-13 (SVN-43) Using C/A Nav Data  | 73   |
| Figure 11-137 Timeline of URA Normalized Range Error PRN-14 (SVN-41) Using C/A Nav Data  | 73   |
| Figure 11-138 Timeline of URA Normalized Range Error PRN-15 (SVN-55) Using C/A Nav Data  | 74   |
| Figure 11-139 Timeline of IAURA Normalized Range Error PRN-15 (SVN-55) Using L2C CNAV Da | ta74 |
| Figure 11-140 Timeline of URA Normalized Range Error PRN-16 (SVN-56) Using C/A Nav Data  | 75   |
| Figure 11-141 Timeline of URA Normalized Range Error PRN-17 (SVN-53) Using C/A Nav Data  | 75   |
| Figure 11-142 Timeline of IAURA Normalized Range Error PRN-17 (SVN-53) Using L2C CNAV Da | ta76 |
| Figure 11-143 Timeline of URA Normalized Range Error PRN-18 (SVN-54) Using C/A Nav Data  | 76   |
| Figure 11-144 Timeline of URA Normalized Range Error PRN-19 (SVN-59) Using C/A Nav Data  | 77   |
| Figure 11-145 Timeline of URA Normalized Range Error PRN-20 (SVN-51) Using C/A Nav Data  | 77   |
| Figure 11-146 Timeline of URA Normalized Range Error PRN-21 (SVN-45) Using C/A Nav Data  | 78   |
| Figure 11-147 Timeline of URA Normalized Range Error PRN-22 (SVN-47) Using C/A Nav Data  | 78   |
| Figure 11-148 Timeline of URA Normalized Range Error PRN-23 (SVN-60) Using C/A Nav Data  | 79   |
| Figure 11-149 Timeline of URA Normalized Range Error PRN-24 (SVN-65) Using C/A Nav Data  | 79   |
| Figure 11-150 Timeline of IAURA Normalized Range Error PRN-24 (SVN-65) Using L2C CNAV Da | ta80 |
| Figure 11-151 Timeline of URA Normalized Range Error PRN-25 (SVN-62) Using C/A Nav Data  | 80   |
| Figure 11-152 Timeline of IAURA Normalized Range Error PRN-25 (SVN-62) Using L2C CNAV Da | ta81 |
| Figure 11-153 Timeline of URA Normalized Range Error PRN-26 (SVN-71) Using C/A Nav Data  | 81   |
| Figure 11-154 Timeline of IAURA Normalized Range Error PRN-26 (SVN-71) Using L2C CNAV Da | ta82 |
| Figure 11-155 Timeline of URA Normalized Range Error PRN-27 (SVN-66) Using C/A Nav Data  | 82   |
| Figure 11-156 Timeline of IAURA Normalized Range Error PRN-27 (SVN-66) Using L2C CNAV Da | ta83 |
| Figure 11-157 Timeline of URA Normalized Range Error PRN-28 (SVN-44) Using C/A Nav Data  | 83   |
| Figure 11-158 Timeline of URA Normalized Range Error PRN-29 (SVN-57) Using C/A Nav Data  | 84   |
| Figure 11-159 Timeline of IAURA Normalized Range Error PRN-29 (SVN-57) Using L2C CNAV Da | ta84 |

| Figure : | 60 Timeline of URA Normalized Range Error PRN-30 (SVN-64) Using C/A Nav Data85    |
|----------|-----------------------------------------------------------------------------------|
| Figure : | 61 Timeline of IAURA Normalized Range Error PRN-30 (SVN-64) Using L2C CNAV Data85 |
| Figure : | 62 Timeline of URA Normalized Range Error PRN-31 (SVN-52) Using C/A Nav Data86    |
| Figure : | 63 Timeline of URA Normalized Range Error PRN-32 (SVN-70) Using C/A Nav Data86    |
| Figure   | 64 Timeline of IAURA Normalized Range Error PRN-32 (SVN-70) Using L2C CNAV Data87 |

### **List of Tables**

| Table 1-1 SPS SIS Performance Requirements Standards                      | 12 |
|---------------------------------------------------------------------------|----|
| Table 2-1 PDOP Availability Statistics                                    | 16 |
| Table 3-1 NANUs Affecting Satellite Availability                          | 19 |
| Table 3-2 NANUs Forecasted to Affect Satellite Availability               | 20 |
| Table 3-3 Cancelled NANUs                                                 | 20 |
| Table 3-4 GPS Satellite Maintenance Statistics                            | 21 |
| Table 3-5 Accuracies Exceeding Threshold Statistics                       | 23 |
| Table 4-1 User Range Error Accuracy                                       | 24 |
| Table 5-1 Horizontal & Vertical Accuracy Statistics for the Quarter       | 26 |
| Table 5-2 Range Error Statistics                                          | 29 |
| Table 5-3 Range Rate Error Statistics                                     | 30 |
| Table 5-4 Range Acceleration Error Statistics                             | 31 |
| Table 6-1 Horizontal & Vertical Accuracy Statistics for September 8, 2016 | 37 |
| Table 7-1 Selected IGS Site Information                                   | 38 |
| Table 7-2 GPS SPS Performance at Selected High Rate IGS Sites             | 39 |
| Table 8-1 RAIM Site Statistics                                            | 42 |
| Table 9-1 GPS test NOTAM Durations                                        | 49 |
| Table 9-2 GPS Test NOTAM Affected Areas (Square Miles) by Altitude        | 49 |
| Table 9-3 NOTAM Impact to GPS Availability                                | 52 |
| Table 10-1 Performance Summary                                            | 57 |

### Introduction 1

### 1.1 **Objective of GPS SPS Performance Analysis Report**

In 1993, the FAA began monitoring and analyzing Global Positioning System (GPS) Standard Positioning Service (SPS) performance data. At present, the FAA has approved GPS and WAAS for IFR operations and is further developing WAAS as a GPS augmentation system. In order to ensure the safe and effective use of GPS and its augmentation systems within the NAS, it is critical that characteristics of GPS performance as well as specific causes for service outages be monitored and understood. To accomplish this objective, GPS SPS performance data is documented in a quarterly GPS Analysis report. This report contains data collected at the following twenty-eight WAAS reference station locations:

- Bethel, AK
- Billings, MT
- Fairbanks, AK
- Cold Bay, AK
- Kotzebue, AK
- Juneau, AK
- Albuquerque, NM
- Anchorage, AK
- Boston, MA
- Washington, D.C.
- Honolulu, HI
- Houston, TX
- Kansas city, KS
- Los Angeles, CA
- Salt Lake City, UT
- Miami, FL
- Minneapolis, MI
- Oakland, CA
- Cleveland, OH
- Seattle, WA
- San Juan, PR
- Atlanta, GA
- Barrow, AK Merida, Mexico
- Gander, Canada
- Tapachula, Mexico
- San Jose Del Cabo, Mexico
- Iqaluit, Canada

The analysis of the data is divided into the four performance categories stated in the Standard Positioning Service Performance Specification (September 2008). These categories are:

- PDOP Availability Standard
- Service Availability Standard
- Service Reliability Standard
- Positioning, Ranging and Timing Accuracy Standard

The results were then compared to the performance parameters stated in the SPS.

### 1.2 Report Overview

Section 2 of this report summarizes the results obtained from the coverage calculation program developed by the WAAS test team at the William J. Hughes Technical Center. The SPS coverage area program uses the GPS satellite almanacs to compute each satellite position as a function of time for a selected day of the week. This program establishes a 5-degree grid between 180 degrees east and 180 degrees west, and from 80 degrees north and 80 degrees south. The program then computes the PDOP at each grid point (1485 total grid points) every minute for the entire day and stores the results. After the PDOP's have been saved the 99.99% index of 1-minute PDOP at each grid point is determined and plotted as contour lines (Figure 2-1). The program also saves the number of satellites used in PDOP calculation at each grid point for analysis.

Section 3 summarizes the GPS constellation performance by providing the "Notice: Advisory to Navstar Users" (NANU) messages to calculate the total time of forecasted and actual satellite outages. This section also evaluates the Service Availability Standard using 24-hour 95% horizontal and vertical position accuracy values.

Section 4 summarizes service reliability performance. Although the specification calls for yearly evaluations, this SPS requirement will be reported at quarterly intervals.

Section 5 provides the position accuracies based on data collected on a daily basis at one-second intervals. This section also provides the statistics on the range error, range error rate and range acceleration error for each satellite. The overall average, maximum, minimum and standard deviations of the range rates and accelerations are tabulated for each satellite.

In Section 6, the data collected during solar storms is analyzed to determine the effects, if any, of GPS SPS performance.

Section 7 provides an analysis of GPS-SPS accuracy performance from a selection of high rate IGS stations around the world.

Section 8 provides a summary of GPS Test NOTAMs.

Section 9 provides four appendices to summarize the data found in this report and provide further information.

Appendix A provides a summary of all the results as compared to the SPS specification.

Appendix B provides the geomagnetic data used for Section 6.

Appendix C provides a PAN Problem Report.

Appendix D provides a glossary of terms used in this PAN report. This glossary was obtained directly from the GPS SPS specification document (September 2008).

### 1.3 Summary of Performance Requirements and Metrics

Table 1-1 over the next four pages lists the performance parameters from the SPS and identifies those parameters verified in this report.

**Table 1-1 SPS SIS Performance Requirements Standards** 

| Per-Satellite Coverage                                                                                                                                                                                                               | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evaluated in<br>This Report |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Terrestrial Service Volume: 100% Coverage                                                                                                                                                                                            | For any health or marginal SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Space Service Volume:<br>No Coverage Performance<br>Specified                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>&gt;</b>                 |
| Constellation Coverage                                                                                                                                                                                                               | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Terrestrial Service Volume:<br>100% Coverage<br>Space Service Volume:<br>No Coverage Performance                                                                                                                                     | • For any healthy or marginal SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                                        | ✓                           |
| Specified Specified                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| User Range Error                                                                                                                                                                                                                     | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Accuracy                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| Single Frequency C/A-Code  • ≤ 7.8m 95% Global Average URE during normal operations over All AODs • ≤ 6.0m 95% Global Average URE during operations at Zero AOD • ≤ 12.8m 95% Global Average URE during normal operations at Any AOD | <ul> <li>For any healthy SPS SIS</li> <li>Neglecting single-frequency ionospheric delay model errors</li> <li>Including group delay time correction (T<sub>GD</sub>) errors at L1</li> <li>Including inter-signal bias (P(Y)-code to C/A-code) errors at L1</li> </ul>                                                                                                                                                                                                       |                             |
| Single Frequency C/A-Code  • ≤ 30m 99.94% Global Average URE during normal operations  • ≤ 30m 99.79% Worst Case single point average during normal operations.                                                                      | <ul> <li>For any healthy SPS SIS.</li> <li>Neglecting single-frequency ionospheric delay model errors</li> <li>Including group delay time correction (T<sub>GD</sub>) errors at L1</li> <li>Including inter-signal bias (P(Y)-code to C/A-code) errors at L1</li> <li>Standard based on measurement interval of one year; average of daily values within service volume</li> <li>Standard based on 3 service failures per year, lasting no more than 6 hours each</li> </ul> | <b>\</b>                    |
| <b>User Range Rate</b>                                                                                                                                                                                                               | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Single Frequency C/A                                                                                                                                                                                                                 | • For one healthy CDC CIC                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| Single-Frequency C/A-Code:  • ≤ 6 mm/sec 95% Global Average URRE over any 3-second interval during normal operations at Any AOD                                                                                                      | <ul> <li>For any healthy SPS SIS</li> <li>Neglecting all perceived pseudorange rate errors attributable to pseudorange step changes caused by NAV message data cutovers</li> <li>Neglecting single-frequency ionospheric delay model errors</li> </ul>                                                                                                                                                                                                                       | <b>✓</b>                    |

| User Range Acceleration<br>Error Accuracy                                                                                                                                                    | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evaluated in<br>This Report                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Single-Frequency C/A-Code:  • ≤ 2 mm/sec² 95% Global average URAE over any 3-second interval during normal operations at Any AOD                                                             | <ul> <li>For any healthy SPS SIS</li> <li>Neglecting all perceived pseudorange rate errors attributable to pseudorange step changes caused by NAV message data cutovers</li> <li>Neglecting single-frequency ionospheric delay model errors</li> </ul>                                                                                                                                                                                                      | ✓ <                                        |
| Coordinated Universal Time Offset Error Accuracy                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| • ≤ 40 nanoseconds 95%<br>Global average UTCOE<br>during normal operations at<br>Any AOD.                                                                                                    | For any healthy SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>✓</b>                                   |
| Instantaneous URE<br>Integrity                                                                                                                                                               | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |
| Single-Frequency C/A-Code:  • ≤ 1x10 <sup>-5</sup> Probability over any hour of the SPS SIS Instantaneous URE exceeding the NTE tolerance without a timely alert during normal operations.   | <ul> <li>For any healthy SPS SIS</li> <li>SPS SIS URE NTE tolerance defined to be ±4.42 times the upper bound on the URA value corresponding to the URA index "N" currently broadcast by the satellite.</li> <li>Given that the maximum SPS SIS instantaneous URE did not exceed the NTE tolerance at the start of the hour</li> <li>Worst case for delayed alert is 6 hours.</li> <li>Neglecting singe-frequency ionospheric delay model errors</li> </ul> | Please see results in the WAAS PAN report. |
| Instantaneous UTCOE Integrity                                                                                                                                                                | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |
| Single-Frequency C/A-Code:  • ≤ 1x10 <sup>-5</sup> Probability over any hour of the SPS SIS Instantaneous UTCOE exceeding the NTE tolerance without a timely alert during normal operations. | <ul> <li>For any healthy SPS SIS</li> <li>SPS SIS URE NTE tolerance defined</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      | ✓                                          |
| Unscheduled Failure<br>Interruption Continuity                                                                                                                                               | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |
| Unscheduled Failure Interruptions:  • ≥ 0.9998 Probability over any hour of not losing the SPS SIS availability from a slot due to unscheduled interruption                                  | <ul> <li>Calculated as an average over all slots in the 24-slot constellation, normalized annually</li> <li>Given that the SPS SIS is available from the slot at the start of the hour</li> </ul>                                                                                                                                                                                                                                                           |                                            |

| Status and Problem Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evaluated in<br>This Report |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Scheduled event affecting service • Appropriate NANU issued to the Coast Guard and the FAA at least 48 hours prior to the event                                                                                                                                                                                                                                                                                                                                                                                                                    | For any SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                    |
| Unscheduled outage or problem affecting service  • Appropriate NANU issued to the Coast Guard and the FAA as soon as possible after the event                                                                                                                                                                                                                                                                                                                                                                                                      | For any SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>✓</b>                    |
| Per-Slot Availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| <ul> <li>≥ 0.957 Probability that a slot in the baseline 24-slot configuration will be occupied by a satellite broadcasting a healthy SPS SIS</li> <li>≥ 0.957 Probability that a slot in the expanded configuration will be occupied by a pair of satellites each broadcasting a healthy SPS SIS</li> </ul>                                                                                                                                                                                                                                       | <ul> <li>Calculated as an average over all slots in the 24-slot constellation, normalized annually</li> <li>Applies to satellites broadcasting a healthy SPS SIS that also satisfy the other performance standards in the SPS performance standard.</li> </ul>                                                                                                                                                                                                 |                             |
| Constellation Availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| ≥ 0.98 Probability that at least 21 slots out of the 24 will be occupied either by a satellite broadcasting a healthy SPS SIS in the baseline 24-slot configuration or by a pair of satellites each broadcasting a healthy SPS SIS in the expanded slot configuration     ≥ 0.99999 Probability that at least 20 slots out of the 24 will be occupied either by a satellite broadcasting a healthy SPS SIS in the baseline 24-slot configuration or by a pair of satellites each broadcasting a healthy SPS SIS in the expanded slot configuration | <ul> <li>Calculated as an average over all slots in the 24-slot constellation, normalized annually.</li> <li>Applies to satellites broadcasting a healthy SPS SIS that also satisfies the other performance standards in the SPS performance standard.</li> </ul>                                                                                                                                                                                              |                             |
| Operational Satellite Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| • ≥ 0.95 Probability that the constellation will have at least 24 operational satellites regardless of whether those operational satellites are located in slots or not                                                                                                                                                                                                                                                                                                                                                                            | • Applies to the total number of operational satellites in the constellation (averaged over any day); where any satellite which appears in the transmitted navigation message almanac is defined to be an operational satellite regardless of whether that satellite is currently broadcasting a healthy SPS SIS or not and regardless of whether the broadcast SPS SIS also satisfies the other performance standards in the SPS performance standard or not. | ✓                           |

| PDOP Availability                                                                                                                                                | Conditions and Constraints                                                                                                                                                                                                                                             | Evaluated in<br>This Report |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| <ul> <li>≥ 98% global PDOP of<br/>6 or less</li> <li>≥ 88% worst site PDOP<br/>of 6 or less</li> </ul>                                                           | Defined for a position/time solution meeting the representative user conditions and operating within the service volume over any 24-hour interval                                                                                                                      | <u> </u>                    |
| Service Availability                                                                                                                                             | Conditions and Constraints                                                                                                                                                                                                                                             |                             |
| <ul> <li>≥ 99% Horizontal<br/>Service Availability,<br/>average location</li> <li>≥ 99% Vertical Service<br/>Availability, average<br/>location</li> </ul>       | <ul> <li>17m Horizontal (SIS only) 95% threshold</li> <li>37m Vertical (SIS only) 95% threshold</li> <li>Defined for a position/time solution meeting the representative user conditions and operating within the service volume over any 24-hour interval.</li> </ul> | ✓                           |
| <ul> <li>≥ 90% Horizontal<br/>Service Availability,<br/>worst-case location</li> <li>≥ 90% Vertical Service<br/>Availability, worst-case<br/>location</li> </ul> | <ul> <li>17m Horizontal (SIS only) 95% threshold</li> <li>37m Vertical (SIS only) 95% threshold</li> <li>Defined for a position/time solution meeting the representative user conditions and operating within the service volume over any 24-hour interval.</li> </ul> | ✓                           |
| Position/Time Accuracy                                                                                                                                           | Conditions and Constraints                                                                                                                                                                                                                                             |                             |
| Global Average Position Domain Accuracy  • ≤ 9m 95% Horizontal Error • ≤ 15m 95% Vertical Error                                                                  | <ul> <li>Defined for a position/time solution meeting the representative user conditions</li> <li>Standard based on a measurement interval of 24 hours averaged over all points in the service volume.</li> </ul>                                                      | <b>✓</b>                    |
| Worst Site Position Domain Accuracy  • ≤ 17m 95% Horizontal Error • ≤ 37m 95% Vertical Error                                                                     | <ul> <li>Defined for a position/time solution meeting the representative user conditions</li> <li>Standard based on a measurement interval of 24 hours averaged over all points in the service volume.</li> </ul>                                                      | ✓                           |
| Time Transfer Domain Accuracy  • ≤ 40 nanoseconds time transfer error 95% of time (SIS only)                                                                     | <ul> <li>Defined for a time transfer solution meeting the representative user conditions</li> <li>Standard based on a measurement interval of 24 hours averaged over all points in the service volume.</li> </ul>                                                      | ✓                           |

### 2 PDOP Availability Standard

**PDOP Availability**: The percentage of time over any 24-hour interval that the PDOP value is less than or equal to its threshold for any point within the service volume.

**Dilution of Precision (DOP)**: The magnifying effect on GPS position error induced by mapping GPS range errors into position within the specified coordinate system through the geometry of the position solution. The DOP varies as a function of satellite positions relative to user position. The DOP may be represented in any user local coordinate desired. Examples are HDOP for local horizontal, VDOP for local vertical, PDOP for all three coordinates, and TDOP for time.

| PDOP Availability Standard                                           | Conditions and Constraints                                                                                                                        |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| ≥ 98% global PDOP of 6 or less<br>≥ 88% worst site PDOP of 6 or less | Defined for a position/time solution meeting the representative user conditions and operating within the service volume over any 24-hour interval |

Almanacs for GPS weeks used for this coverage portion of the report were obtained from the Coast Guard web site (www.navcen.uscg.mil). In addition, real-time broadcast satellite ephemeris and summary NANUs were utilized to incorporate satellite maintenance start and stop times. Using this data, an SPS coverage area program developed by the WAAS test team was used to calculate the PDOP at every 2° point between longitudes of 180W to 180E and 75S and 75N at one-minute intervals. This gives a total of 1440 samples for each of the 13,500 grid points in the coverage area. Table 2-1 provides the global averages and worst-case availability over a 24-hour period for each week. Table 2-1 also gives the global 99.9% PDOP value for each of the thirteen GPS Weeks. The PDOP was 3.061 or better 99.9% of the time for each of the 24-hour intervals.

Figure 2-1 is a contour plot of PDOP values over the entire globe. Inside each contour area, the PDOP value is greater than or equal to the contour value shown in the legend for that color line. That areas' value is also less than the next higher contour value, unless another contour line lies within the current area. A single "DOP hole" where the PDOP value is greater than 6 was evaluated for satellite visibility for one 24-hour interval from the week shaded in Table 2-1. The histogram in Figure 2-2 shows the satellite visibility at the DOP hole position for the 24 hour interval in question. The GPS coverage performance evaluated met the specifications stated in the SPS.

| Date Range of Week | Global 99.9% PDOP<br>Value | Global Average<br>Availability | Worst-Case Point<br>Availability |
|--------------------|----------------------------|--------------------------------|----------------------------------|
|                    |                            | (Spec: ≥ 98%)                  | (Spec: ≥ 88%)                    |
| 2-8 Jul            | 3.044                      | 99.9996                        | 99.5039                          |
| 9 – 15 Jul         | 3.015                      | 99.9996                        | 99.4742                          |
| 16 – 22 Jul        | 2.997                      | 99.9995                        | 99.4245                          |
| 23 – 29 Jul        | 2.964                      | 99.9995                        | 99.3750                          |
| 30 Jul – 5 Aug     | 2.989                      | 99.9993                        | 99.3055                          |
| 6 – 12 Aug         | 2.962                      | 99.9994                        | 99.3750                          |
| 13 – 19 Aug        | 2.942                      | 99.9994                        | 99.4146                          |
| 20 – 26 Aug        | 2.959                      | 99.9994                        | 99.4444                          |
| 27 Aug – 2 Sep     | 3.047                      | 99.9995                        | 99.4742                          |
| 3 – 9 Sep          | 2.942                      | 99.9995                        | 99.4642                          |
| 10 – 16 Sep        | 3.061                      | 99.9995                        | 99.5138                          |
| 17 – 23 Sep        | 2.922                      | 99.9996                        | 99.5833                          |
| 24 Sep – 30 Sep    | 2.910                      | 99.9997                        | 99.6527                          |

**Table 2-1 PDOP Availability Statistics** 

Figure 2-1 World GPS Maximum PDOP

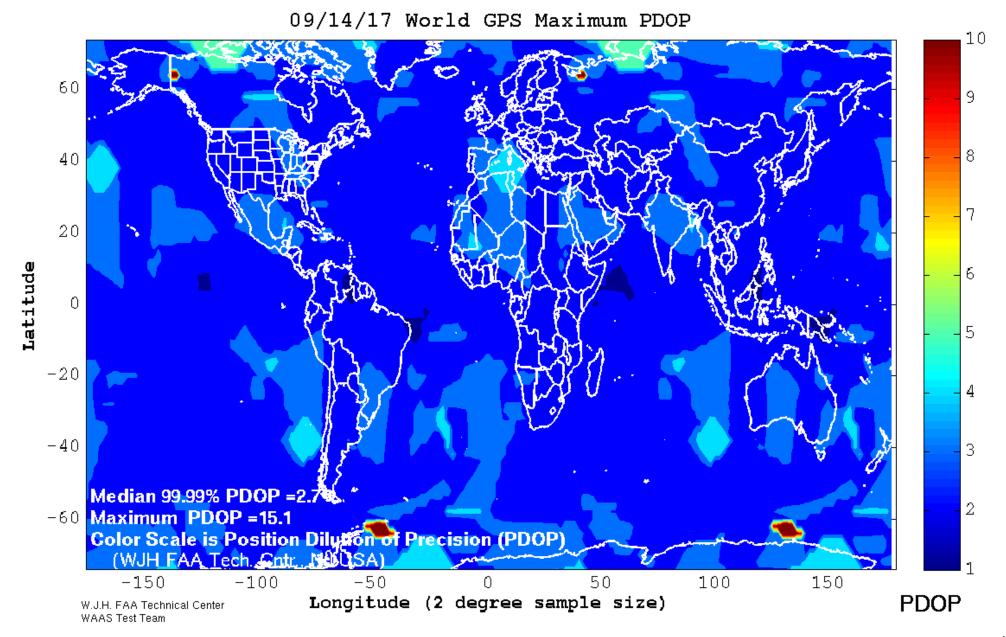
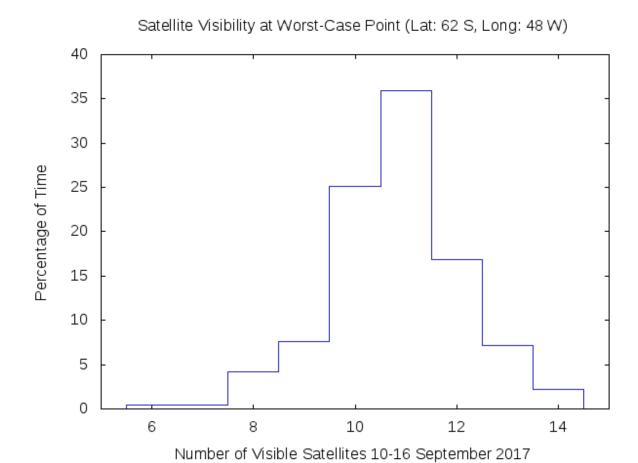




Figure 2-2 Satellite Visibility Profile for Worst-Case Point



### 3 NANU Summary and Evaluation

**NANU:** Notice Advisory to NAVSTAR Users – A periodic bulletin alerting users to changes in the satellite system performance.

| Status and Problem Reporting                                       | Conditions and Constraints |
|--------------------------------------------------------------------|----------------------------|
|                                                                    |                            |
| Scheduled event affecting service                                  |                            |
| <ul> <li>Appropriate NANU issued to the Coast Guard and</li> </ul> | For any SPS SIS            |
| the FAA at least 48 hours prior to the event                       |                            |
| Unscheduled outage or problem affecting service                    |                            |
| <ul> <li>Appropriate NANU issued to the Coast Guard and</li> </ul> | For any SPS SIS            |
| the FAA as soon as possible after the event                        |                            |

### 3.1 Satellite Outages from NANU Reports

Satellite availability performance was analyzed based on published "Notice: Advisory to Navstar Users" messages (NANU's). During this reporting period, 1 July through 30 September 2017, there were a total of twenty reported outages. Fifteen outages were maintenance activities and were reported in advance, while five were unscheduled outages. A complete listing of outage NANU's for the reporting period is provided in Table 3-1. A complete listing of the forecasted outage NANU's for the reporting period can be found in Table 3-2. Canceled outage NANU's (if any) are provided in Table 3-3. The minimum duration a scheduled outage was forecasted ahead of time was 125.967 hours. The maximum response time following an unscheduled outage was 0.883 hours. Therefore the probability of continuity not being affected due to an unscheduled failure interruption was 100%, which met the specification requirement.

Total Total Start End NANU# **PRN TYPE Start Date End Date** Total Time Time Unscheduled Scheduled 2017066 2 **FCSTSUMM** 6-Jul-17 18:41 7-Jul-17 0:09 5.47 5.47 2017067 23 **FCSTSUMM** 11-Jul-17 23:45 12-Jul-17 2:20 2.58 2.58 2017069 5 **FCSTSUMM** 13-Jul-17 21:36 14-Jul-17 0:20 2.73 2.73 2017071 7 FCSTSUMM 18-Jul-17 21:27 19-Jul-17 3:27 6.00 6.00 **FCSTSUMM** 5.23 2017075 25 3-Aug-17 16:14 3-Aug-17 21:28 5.23 2017076 17 **FCSTSUMM** 8-Aug-17 23:45 9-Aug-17 3:35 3.83 3.83 2017079 15 **FCSTSUMM** 10-Aug-17 14:39 10-Aug-17 17:52 3.22 3.22 2017081 9 **UNUSABLE** 11-Aug-17 10:58 11-Aug-17 13:41 2.72 2.72 2017084 31 **FCSTSUMM** 15-Aug-17 15:02 15-Aug-17 17:20 2.30 2.30 2017088 2 **FCSTSUMM** 18-Aug-17 3:12 18-Aug-17 5:36 2.40 2.40 2017091 22:21 2.22 2.22 29 **FCSTSUMM** 22-Aug-17 20:08 22-Aug-17 2017092 24-Aug-17 2.37 12 **FCSTSUMM** 6:13 24-Aug-17 8:35 2.37 2017093 9 **FCSTSUMM** 25-Aug-17 8:47 25-Aug-17 13:58 5.18 5.18 2017094 21 FCSTSUMM 29-Aug-17 17:38 29-Aug-17 20:07 2.48 2.48 2017096 5 **FCSTSUMM** 31-Aug-17 19:56 1-Sep-17 1:13 5.28 5.28 2017097 7.12 13 **FCSTSUMM** 7-Sep-17 10:50 7-Sep-17 17:57 7.12 2017100 **UNUSABLE** 12-Sep-17 6:25 12-Sep-17 10:07 3.70 3.70 7 2017103 1 UNUSABLE 14-Sep-17 0:21 14-Sep-17 9:26 9.08 9.08 2017104 7 UNUSABLE 12-Sep-17 13:42 15-Sep-17 20:09 78.45 78.45

17-Sep-17

18:13

3.22

97.17

Table 3-1 NANUs Affecting Satellite Availability

155.58

58.41

3.22

2017106

25

UNUSABLE

17-Sep-17

Totals of Unscheduled, Scheduled & Total Downtime

15:00

### **GENERAL NANUs**

2017070 – SVN 36 will resume transmitting L-band signal on PRN 4, and will not be included in the almanac.

Table 3-2 NANUs Forecasted to Affect Satellite Availability

| NANU#          | PRN                           | Type    | Start<br>Date | Start<br>Time | End Date | End Time | Total | Comments       |
|----------------|-------------------------------|---------|---------------|---------------|----------|----------|-------|----------------|
| <u>2017062</u> | 2                             | FCSTDV  | 6-Jul         | 17:55         | 7-Jul    | 5:55     | 12    | 2017066        |
| <u>2017064</u> | 23                            | FCSTMX  | 11-Jul        | 23:00         | 12-Jul   | 7:00     | 8     | <u>2017067</u> |
| <u>2017065</u> | 5                             | FCSTMX  | 13-Jul        | 21:00         | 14-Jul   | 5:00     | 8     | <u>2017069</u> |
| <u>2017068</u> | 7                             | FCSTMX  | 18-Jul        | 20:30         | 19-Jul   | 4:30     | 8     | <u>2017071</u> |
| <u>2017072</u> | 25                            | FCSTDV  | 3-Aug         | 16:05         | 4-Aug    | 4:05     | 12    | <u>2017075</u> |
| <u>2017073</u> | 17                            | FCSTMX  | 8-Aug         | 23:00         | 9-Aug    | 7:00     | 8     | <u>2017076</u> |
| <u>2017074</u> | 15                            | FCSTMX  | 10-Aug        | 14:00         | 10-Aug   | 22:00    | 8     | <u>2017079</u> |
| <u>2017077</u> | 31                            | FCSTMX  | 15-Aug        | 13:00         | 15-Aug   | 21:00    | 8     | <u>2017084</u> |
| <u>2017078</u> | 2                             | FCSTMX  | 18-Aug        | 2:30          | 18-Aug   | 10:30    | 8     | <u>2017088</u> |
| <u>2017080</u> | 9                             | UNUSUFN | 11-Aug        | 10:59         |          |          |       | <u>2017081</u> |
| <u>2017082</u> | 9                             | FCSTDV  | 18-Aug        | 8:00          | 18-Aug   | 20:00    | 0     | <u>2017083</u> |
| <u>2017085</u> | 29                            | FCSTMX  | 22-Aug        | 19:30         | 23-Aug   | 3:30     | 8     | <u>2017091</u> |
| <u>2017086</u> | 12                            | FCSTMX  | 24-Aug        | 5:30          | 24-Aug   | 13:30    | 8     | <u>2017092</u> |
| <u>2017087</u> | 9                             | FCSTDV  | 25-Aug        | 8:15          | 25-Aug   | 20:15    | 12    | <u>2017093</u> |
| <u>2017089</u> | 21                            | FCSTMX  | 29-Aug        | 17:00         | 30-Aug   | 1:00     | 8     | <u>2017094</u> |
| <u>2017090</u> | 5                             | FCSTDV  | 31-Aug        | 19:15         | 1-Sep    | 7:15     | 12    | <u>2017096</u> |
| 2017095        | 13                            | FCSTDV  | 7-Sep         | 10:30         | 7-Sep    | 22:30    | 12    | 2017097        |
| <u>2017098</u> | 26                            | FCSTDV  | 19-Sep        | 11:20         | 19-Sep   | 23:20    | 0     | 2017107        |
| <u>2017099</u> | 7                             | UNUSUFN | 12-Sep        | 6:26          |          |          |       | <u>2017100</u> |
| <u>2017101</u> | 7                             | UNUSUFN | 12-Sep        | 13:42         |          |          |       | <u>2017104</u> |
| <u>2017102</u> | 1                             | UNUSUFN | 14-Sep        | 0:21          |          |          |       | <u>2017103</u> |
| <u>2017105</u> | 25                            | UNUSUFN | 17-Sep        | 15:00         |          |          | -     | <u>2017106</u> |
|                |                               |         |               |               |          |          |       |                |
|                | Total Forecasted Downtime 140 |         |               |               |          |          |       |                |

**Table 3-3 Cancelled NANUs** 

| NANU#          | PRN | Type     | Start Date | Start Time | Comments       |
|----------------|-----|----------|------------|------------|----------------|
| <u>2017107</u> | 26  | FCSTCANC | 19-Sep     | 11:20      | <u>2017098</u> |
| <u>2017083</u> | 9   | FCSTCANC | 18-Aug     | 8:00       | <u>2017082</u> |

Satellite Reliability, Maintainability, and Availability (RMA) data is being collected based on published "Notice: Advisory to Navstar Users" messages (NANU's). This data has been summarized in Table 3-4. The "Total Satellite Observed MTTR" was calculated by taking the average downtime of all satellite outage occurrences. Scheduled downtime was forecasted in advance via NANU's. All other downtime reported via NANU was considered unscheduled. The "Percent Operational" was calculated based on the ratio of total actual operating hours to total available operating hours for every satellite.

**Table 3-4 GPS Satellite Maintenance Statistics** 

| Satellite Reliability/Maintainability/Availability (RMA) Parameter | 1-Jul-17<br>30-Sep-17 | 1-Jan-00<br>30-Sep-17 |
|--------------------------------------------------------------------|-----------------------|-----------------------|
| Total Forecast Downtime (hrs):                                     | 140                   | 11818.82              |
| Total Actual Downtime (hrs):                                       | 155.58                | 39149.42              |
| Total Actual Scheduled Downtime (hrs):                             | 58.41                 | 6606.72               |
| Total Actual Unscheduled Downtime (hrs):                           | 97.17                 | 32542.70              |
| Total Satellite Observed MTTR (hrs):                               | 7.78                  | 42.65                 |
| Scheduled Satellite Observed MTTR (hrs):                           | 3.89                  | 9.03                  |
| Unscheduled Satellite Observed MTTR (hrs):                         | 19.43                 | 174.96                |
| # Total Satellite Outages:                                         | 20                    | 918                   |
| # Scheduled Satellite Outages:                                     | 15                    | 732                   |
| # Unscheduled Satellite Outages:                                   | 5                     | 186                   |
| Percent Operational Scheduled Downtime:                            | 99.91                 | 99.86                 |
| Percent Operational All Downtime:                                  | 99.77                 | 99.19                 |

### 3.2 Service Availability Standard

**Service Availability:** The percentage of time over any 24-hour interval that the predicted 95% position error is less than the threshold at any given point within the service volume.

- **Horizontal Service Availability:** The percentage of time over any 24-hour interval that the predicted 95% horizontal error is less than its threshold for any point within the service volume.
- **Vertical Service Availability:** The percentage of time over any 24-hour interval that the predicted 95% vertical error is less than its threshold for any point within the service volume.

| Service Availability Standard                       | Conditions and Constraints                              |
|-----------------------------------------------------|---------------------------------------------------------|
| • ≥ 99% Horizontal Service Availability, average    | • 17m Horizontal (SIS only) 95% threshold               |
| location                                            | • 37m Vertical (SIS only) 95% threshold                 |
|                                                     | Defined for a position/time solution meeting the        |
| • ≥ 99% Vertical Service Availability, average      | representative user conditions and operating within the |
| location                                            | service volume over any 24-hour interval.               |
| • ≥ 90% Horizontal Service Availability, worst-case | • 17m Horizontal (SIS only) 95% threshold               |
| location                                            | • 37m Vertical (SIS only) 95% threshold                 |
|                                                     | Defined for a position/time solution meeting the        |
| • ≥ 90% Vertical Service Availability, worst-case   | representative user conditions and operating within the |
| location                                            | service volume over any 24-hour interval.               |

To verify availability, the data collected from receivers at the twenty-eight WAAS sites was reduced to calculate 24-hour accuracy information and reported in Table 3-5. The data was collected at one-second intervals between 1 July and 30 September 2017.

**Table 3-5 Accuracies Exceeding Threshold Statistics** 

| Site              | Total Number of<br>Seconds of SPS                                | Instances of 24-hour<br>Threshold Failures | Quarters Service<br>Availability % |  |  |  |
|-------------------|------------------------------------------------------------------|--------------------------------------------|------------------------------------|--|--|--|
|                   | Monitoring                                                       | _                                          |                                    |  |  |  |
| Albuquerque       | 7939198                                                          | 0                                          | 100%                               |  |  |  |
| Anchorage         | 7937803                                                          | 0                                          | 100%                               |  |  |  |
| Atlanta           | 7939196                                                          | 0                                          | 100%                               |  |  |  |
| Barrow            | 7937017                                                          | 0                                          | 100%                               |  |  |  |
| Bethel            | 7938794                                                          | 0                                          | 100%                               |  |  |  |
| Billings          | 7938931                                                          | 0                                          | 100%                               |  |  |  |
| Boston            | 7937750                                                          | 0                                          | 100%                               |  |  |  |
| Cleveland         | 7939149                                                          | 0                                          | 100%                               |  |  |  |
| Cold Bay          | 7940655                                                          | 0                                          | 100%                               |  |  |  |
| Fairbanks         | 7939470                                                          | 0                                          | 100%                               |  |  |  |
| Gander            | 7937451                                                          | 0                                          | 100%                               |  |  |  |
| Honolulu          | 7940675                                                          | 0                                          | 100%                               |  |  |  |
| Houston           | 7938932                                                          | 0                                          | 100%                               |  |  |  |
| Iqaluit           | 7938494                                                          | 0                                          | 100%                               |  |  |  |
| Juneau            | 7939844                                                          | 0                                          | 100%                               |  |  |  |
| Kansas City       | 7939295                                                          | 0                                          | 100%                               |  |  |  |
| Kotzebue          | 7306201                                                          | 0                                          | 100%                               |  |  |  |
| Los Angeles       | 7882786                                                          | 0                                          | 100%                               |  |  |  |
| Merida            | 7840014                                                          | 0                                          | 100%                               |  |  |  |
| Miami             | 7940666                                                          | 0                                          | 100%                               |  |  |  |
| Minneapolis       | 7940671                                                          | 0                                          | 100%                               |  |  |  |
| Oakland           | 7939219                                                          | 0                                          | 100%                               |  |  |  |
| Salt Lake City    | 1606462                                                          | 0                                          | 100%                               |  |  |  |
| San Jose Del Cabo | 7811055                                                          | 0                                          | 100%                               |  |  |  |
| San Juan          | 7090005                                                          | 0                                          | 100%                               |  |  |  |
| Seattle           | 7757153                                                          | 0                                          | 100%                               |  |  |  |
| Tapachula         | 7929651                                                          | 0                                          | 100%                               |  |  |  |
| Washington, DC    | 7939080                                                          | 0                                          | 100%                               |  |  |  |
| Global            | Global Average over Reporting Period = 100% (SPS Spec. > 95.87%) |                                            |                                    |  |  |  |

## 4 Service Reliability Standard

**Service Reliability:** The percentage of time over a specific time interval that the instantaneous SIS SPS URE is maintained within a specified reliability threshold at any given point within the service volume, for all healthy GPS satellites.

| User Range Error Accuracy                       | Conditions and Constraints                                           |
|-------------------------------------------------|----------------------------------------------------------------------|
|                                                 | For any healthy SPS SIS.                                             |
| Single Frequency C/A-Code                       | Neglecting single-frequency ionospheric delay                        |
|                                                 | model errors                                                         |
| • ≤ 30m 99.94% Global Average URE during normal | • Including group delay time correction (T <sub>GD</sub> ) errors at |
| operations                                      | L1                                                                   |
|                                                 | • Including inter-signal bias (P(Y)-code to C/A-code)                |
| • ≤ 30m 99.79% Worst Case single point average  | errors at L1                                                         |
| during normal operations.                       | • Standard based on measurement interval of one year;                |
|                                                 | average of daily values within service volume                        |
|                                                 | • Standard based on 3 service failures per year, lasting             |
|                                                 | no more than 6 hours each                                            |

Table 4-1 shows a comparison to the service reliability standard for range data collected at a set of six receivers across North America. Although the specification calls for yearly evaluations, we will be evaluating this SPS requirement at quarterly intervals. Additional range analysis results can be found in table 5-2. The maximum User Range Error recorded this quarter was 20.740 meters on satellite PRN 15.

**Table 4-1 User Range Error Accuracy** 

| Date Range of<br>Data Collection | Site        | Number of<br>Samples<br>This Quarter | Number of<br>Samples where<br>SPS URE<br>> 30m NTE | Percentage |
|----------------------------------|-------------|--------------------------------------|----------------------------------------------------|------------|
| 1 Jul – 30 Sep 2017              | Boston      | 68,538,287                           | 0                                                  | 100%       |
| 1 Jul – 30 Sep 2017              | Honolulu    | 71,658,895                           | 0                                                  | 100%       |
| 1 Jul – 30 Sep 2017              | Los Angeles | 68,712,406                           | 0                                                  | 100%       |
| 1 Jul – 30 Sep 2017              | Miami       | 69,684,047                           | 0                                                  | 100%       |
| 1 Jul – 30 Sep 2017              | Merida      | 70,840,548                           | 0                                                  | 100%       |
| 1 Jul – 30 Sep 2017              | Juneau      | 68,803,388                           | 0                                                  | 100%       |
|                                  |             |                                      |                                                    |            |
| 1 Jul – 30 Sep 2017              | Global      | 418,237,571                          | 0                                                  | 100%       |

## 5 Accuracy Standard

**Positioning Accuracy:** The statistical difference, at a 95% probability, between position measurements and a surveyed benchmark for any point within the service volume over any 24-hour interval.

- **Horizontal Positioning Accuracy**: The statistical difference, at a 95% probability, between horizontal position measurements and a surveyed benchmark for any point within the service volume over any 24-hour interval.
- **Vertical Positioning Accuracy**: The statistical difference, at a 95% probability, between vertical position measurements and a surveyed benchmark for any point within the service volume over any 24-hour interval.

| Position/Time Accuracy                                                                           | Conditions and Constraints                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Global Average Position Domain Accuracy  • ≤ 9m 95% Horizontal Error  • ≤ 15m 95% Vertical Error | <ul> <li>Defined for a position/time solution meeting the representative user conditions</li> <li>Standard based on a measurement interval of 24 hours averaged over all points in the service volume.</li> </ul> |
| Worst Site Position Domain Accuracy                                                              | Defined for a position/time solution meeting the                                                                                                                                                                  |
|                                                                                                  | representative user conditions                                                                                                                                                                                    |
| • ≤ 17m 95% Horizontal Error                                                                     | Standard based on a measurement interval of 24                                                                                                                                                                    |
| • ≤ 37m 95% Vertical Error                                                                       | hours averaged over all points in the service volume.                                                                                                                                                             |
| Time Transfer Domain Accuracy                                                                    | Defined for a time transfer solution meeting the                                                                                                                                                                  |
| ·                                                                                                | representative user conditions                                                                                                                                                                                    |
| • ≤ 40 nanoseconds time transfer error 95% of time                                               | Standard based on a measurement interval of 24                                                                                                                                                                    |
| (SIS only)                                                                                       | hours averaged over all points in the service volume.                                                                                                                                                             |

| II D A                                                           | C122                                                                 |
|------------------------------------------------------------------|----------------------------------------------------------------------|
| User Range Accuracy                                              | Conditions and Constraints                                           |
| Single Frequency C/A-Code                                        | For any healthy SPS SIS                                              |
| • ≤ 7.8m 95% Global Average URE during normal                    | Neglecting single-frequency ionospheric delay                        |
| operations over All AODs                                         | model errors                                                         |
| • ≤ 6.0m 95% Global Average URE during operations                | • Including group delay time correction (T <sub>GD</sub> ) errors at |
| at Zero AOD                                                      | L1                                                                   |
| • ≤ 12.8m 95% Global Average URE during normal                   | • Including inter-signal bias (P(Y)-code to C/A-code)                |
| operations at Any AOD                                            | errors at L1                                                         |
| Single-Frequency C/A-Code:                                       | For any healthy SPS SIS                                              |
|                                                                  | Neglecting all perceived pseudorange rate errors                     |
| • ≤ 6 mm/sec 95% Global Average URRE over any 3-                 | attributable to pseudorange step changes caused by                   |
| second interval during normal operations at Any AOD              | NAV message data cutovers                                            |
|                                                                  | Neglecting single-frequency ionospheric delay                        |
|                                                                  | model errors                                                         |
| Single-Frequency C/A-Code:                                       | For any healthy SPS SIS                                              |
|                                                                  | Neglecting all perceived pseudorange rate errors                     |
| • $\leq 2 \text{ mm/sec}^2 95\%$ Global average URAE over any 3- | attributable to pseudorange step changes caused by                   |
| second interval during normal operations at Any AOD              | NAV message data cutovers                                            |
|                                                                  | Neglecting single-frequency ionospheric delay                        |
|                                                                  | model errors                                                         |
| Coordinated Universal Time Offset Error Accuracy                 | Conditions and Constraints                                           |
| • ≤ 40 nanoseconds 95% Global average UTCOE                      | For any healthy SPS SIS                                              |
| during normal operations at Any AOD.                             |                                                                      |

### **5.1** Position Accuracy

The data used for this section was collected for every second from 1 July through 30 September 2017 at the selected WAAS locations. Table 5-1 provides the 95% and 99.99% horizontal and vertical error accuracies for the quarter. Every twenty-four hour analysis period this quarter passed both the worst-case and global average position accuracy requirements set forth by the SPS specification.

Table 5-1 Horizontal & Vertical Accuracy Statistics for the Quarter

| Site              | 95%<br>Vertical | 95%<br>Horizontal | 99.99%<br>Vertical | 99.99%<br>Horizontal |
|-------------------|-----------------|-------------------|--------------------|----------------------|
|                   | (Meters)        | (Meters)          | (Meters)           | (Meters)             |
| Albuquerque       | 3.838           | 1.513             | 7.566              | 3.015                |
| Anchorage         | 3.689           | 1.675             | 7.174              | 3.621                |
| Atlanta           | 3.973           | 1.519             | 7.854              | 3.744                |
| Barrow            | 3.673           | 1.473             | 7.913              | 2.897                |
| Bethel            | 3.975           | 1.603             | 7.401              | 3.857                |
| Billings          | 3.705           | 1.513             | 7.265              | 2.761                |
| Boston            | 3.501           | 1.615             | 6.870              | 3.345                |
| Cleveland         | 3.862           | 1.608             | 6.856              | 3.362                |
| Cold Bay          | 4.042           | 1.465             | 7.757              | 3.348                |
| Fairbanks         | 3.467           | 1.664             | 6.804              | 3.293                |
| Gander            | 3.147           | 1.651             | 5.897              | 3.438                |
| Honolulu          | 4.419           | 2.975             | 9.664              | 6.155                |
| Houston           | 4.013           | 1.708             | 7.902              | 3.303                |
| Iqaluit           | 3.527           | 1.459             | 8.505              | 3.425                |
| Juneau            | 3.411           | 1.608             | 7.260              | 3.640                |
| Kansas City       | 3.822           | 1.475             | 7.470              | 3.982                |
| Kotzebue          | 3.737           | 1.802             | 7.517              | 3.131                |
| Los Angeles       | 4.488           | 1.665             | 8.080              | 3.546                |
| Merida            | 3.665           | 2.619             | 8.664              | 8.864                |
| Miami             | 3.654           | 1.898             | 8.080              | 5.084                |
| Minneapolis       | 3.618           | 1.529             | 6.261              | 3.509                |
| Oakland           | 4.719           | 1.724             | 7.949              | 3.430                |
| Salt Lake City    | 3.574           | 1.360             | 5.401              | 2.309                |
| San Jose Del Cabo | 3.790           | 2.553             | 8.192              | 6.365                |
| San Juan          | 4.064           | 2.014             | 8.747              | 5.824                |
| Seattle           | 4.026           | 1.501             | 6.761              | 3.161                |
| Tapachula         | 3.641           | 3.234             | 11.628             | 10.989               |
| Washington, DC    | 3.855           | 1.551             | 7.021              | 3.417                |

Figures 5-1 and 5-2 are the combined histograms of the vertical and horizontal errors for all twenty-eight WAAS sites from 1 July to 30 September 2017.

Figure 5-1 Global Vertical Error Histogram

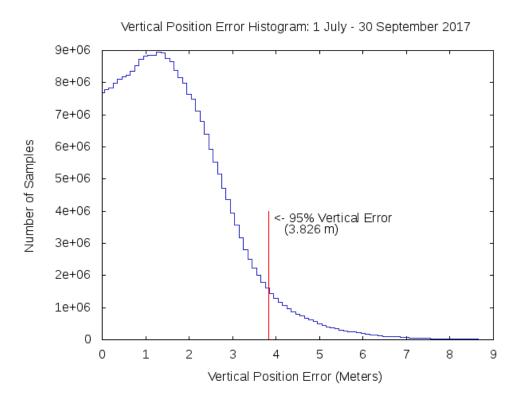
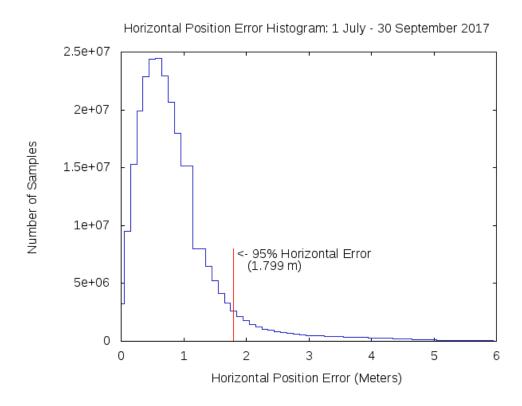




Figure 5-2 Global Horizontal Error Histogram



### **5.2** Time Transfer Accuracy

The GPS time error data between 1 July and 30 September 2017 was downloaded from USNO Internet site. The USNO data file contains the time difference between the USNO master clock and GPS system time for each GPS satellites during the time period. Over 10,000 samples of GPS time error are contained in the USNO data file. In order to evaluate the GPS time transfer error, the data file was used to create a histogram (Fig 5-3) to represent the distribution of GPS time error. The histogram was created by taking the absolute value of time difference between the USNO master clock and GPS system time, then creating data bins with one nanosecond precision. The number of samples in each bin was then plotted to form the histogram in Fig 5-3. The maximum instantaneous UTC offset error (UTCOE) for the quarter was 28.4 nanoseconds. The mean, standard deviation and 95% index of Time Transfer Error, and the maximum UTCOE are all within the requirements of GPS SPS time error.

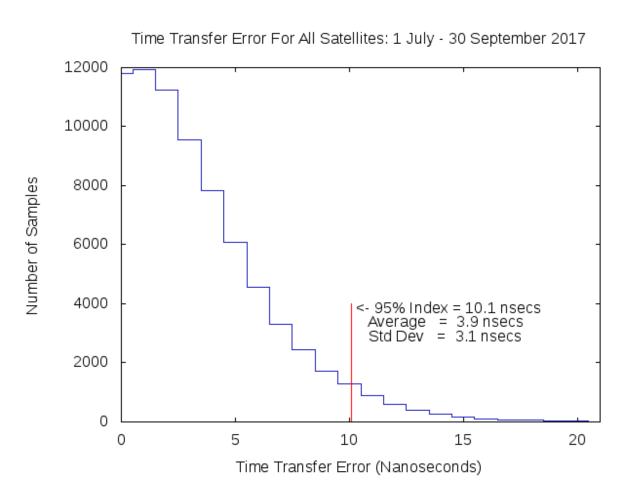



Figure 5-3 Time Transfer Error

## **5.3** Range Domain Accuracy

Tables 5-3 through 5-5 provide the statistical data for the range error, range rate error and the range acceleration error for each satellite. This data was collected between 1 July and 30 September 2017. A weighted average filter was used for the calculation of the range rate error and the range acceleration error. All Range Domain SPS specifications were met.

**Table 5-2 Range Error Statistics** 

| PRN | RMS Range<br>Error (≤6 m)<br>(Meters) | Range Error<br>Mean<br>(Meters) | 1σ Range<br>Error<br>(Meters) | 95% Range<br>Error<br>(Meters) | Max Range Error<br>(SPS Spec. ≤ 30 m)<br>(Meters) | Samples  |
|-----|---------------------------------------|---------------------------------|-------------------------------|--------------------------------|---------------------------------------------------|----------|
| 1   | 1.202                                 | 0.396                           | 0.987                         | 2.160                          | 10.901                                            | 13641385 |
| 2   | 1.486                                 | 0.906                           | 0.913                         | 2.584                          | 6.782                                             | 14552025 |
| 3   | 1.202                                 | 0.421                           | 0.994                         | 2.233                          | 12.557                                            | 14288846 |
| 5   | 1.310                                 | 0.116                           | 1.032                         | 2.403                          | 10.406                                            | 13619852 |
| 6   | 1.215                                 | -0.090                          | 0.970                         | 2.304                          | 18.252                                            | 13803707 |
| 7   | 1.198                                 | 0.787                           | 0.761                         | 2.136                          | 12.890                                            | 12084477 |
| 8   | 1.525                                 | 0.804                           | 1.038                         | 2.629                          | 13.499                                            | 12588765 |
| 9   | 1.317                                 | 0.872                           | 0.874                         | 2.385                          | 13.599                                            | 13219355 |
| 10  | 1.277                                 | 0.550                           | 0.966                         | 2.297                          | 9.660                                             | 13110223 |
| 11  | 1.466                                 | 0.866                           | 1.007                         | 2.514                          | 16.154                                            | 12198652 |
| 12  | 1.224                                 | 0.351                           | 1.024                         | 2.329                          | 18.606                                            | 13971132 |
| 13  | 1.248                                 | 0.351                           | 0.978                         | 2.279                          | 9.019                                             | 13091122 |
| 14  | 1.768                                 | 1.442                           | 0.872                         | 2.861                          | 12.339                                            | 14109081 |
| 15  | 1.320                                 | 0.499                           | 1.046                         | 2.428                          | 20.740                                            | 12843836 |
| 16  | 1.800                                 | 1.425                           | 1.021                         | 2.961                          | 13.752                                            | 13103456 |
| 17  | 1.338                                 | 0.646                           | 0.956                         | 2.382                          | 18.453                                            | 14503072 |
| 18  | 1.751                                 | 1.185                           | 1.116                         | 2.939                          | 9.089                                             | 13779501 |
| 19  | 1.800                                 | 1.346                           | 1.015                         | 3.002                          | 17.900                                            | 13997824 |
| 20  | 1.716                                 | 1.208                           | 0.999                         | 2.903                          | 7.838                                             | 14262628 |
| 21  | 1.778                                 | 1.137                           | 1.172                         | 2.996                          | 10.922                                            | 13251680 |
| 22  | 2.162                                 | 1.870                           | 1.020                         | 3.367                          | 12.162                                            | 13625196 |
| 23  | 1.765                                 | 1.457                           | 0.909                         | 2.895                          | 15.751                                            | 12813670 |
| 24  | 1.462                                 | 0.360                           | 1.149                         | 2.652                          | 20.262                                            | 13994643 |
| 25  | 1.388                                 | 0.807                           | 1.003                         | 2.485                          | 17.157                                            | 14044368 |
| 26  | 1.456                                 | 1.104                           | 0.869                         | 2.471                          | 10.205                                            | 12669932 |
| 27  | 1.376                                 | 0.853                           | 0.981                         | 2.460                          | 11.928                                            | 13356560 |
| 28  | 1.794                                 | 1.137                           | 1.023                         | 3.081                          | 20.248                                            | 13716150 |
| 29  | 1.610                                 | 0.757                           | 1.120                         | 2.848                          | 14.600                                            | 13184682 |
| 30  | 1.201                                 | 0.701                           | 0.827                         | 2.150                          | 17.993                                            | 12728244 |
| 31  | 1.379                                 | 0.887                           | 0.915                         | 2.438                          | 11.769                                            | 13775122 |
| 32  | 1.183                                 | 0.427                           | 0.934                         | 2.238                          | 11.650                                            | 14308385 |

**Table 5-3 Range Rate Error Statistics** 

| PRN | Range Rate | 95% Range  | Max Range  | Samples  |
|-----|------------|------------|------------|----------|
|     | Error RMS  | Rate Error | Rate Error | •        |
|     | (mm/s)     | (mm/s)     | (mm/s)     |          |
| 1   | 1.406      | 2.588      | 177.070    | 13641385 |
| 2   | 1.448      | 2.761      | 153.900    | 14552025 |
| 3   | 1.367      | 2.575      | 157.550    | 14288846 |
| 5   | 1.563      | 2.985      | 144.810    | 13619852 |
| 6   | 1.351      | 2.572      | 125.980    | 13803707 |
| 7   | 1.428      | 2.689      | 154.750    | 12084477 |
| 8   | 1.640      | 2.801      | 141.830    | 12588765 |
| 9   | 1.338      | 2.548      | 152.130    | 13219355 |
| 10  | 1.403      | 2.581      | 127.810    | 13110223 |
| 11  | 1.506      | 2.812      | 147.760    | 12198652 |
| 12  | 1.542      | 2.972      | 141.650    | 13971132 |
| 13  | 1.573      | 2.896      | 140.600    | 13091122 |
| 14  | 1.494      | 2.773      | 156.220    | 14109081 |
| 15  | 1.498      | 2.839      | 135.570    | 12843836 |
| 16  | 1.514      | 2.869      | 151.460    | 13103456 |
| 17  | 1.528      | 2.891      | 147.290    | 14503072 |
| 18  | 1.635      | 2.924      | 164.220    | 13779501 |
| 19  | 1.489      | 2.833      | 149.180    | 13997824 |
| 20  | 1.521      | 2.868      | 140.820    | 14262628 |
| 21  | 1.609      | 3.008      | 144.450    | 13251680 |
| 22  | 1.492      | 2.808      | 133.260    | 13625196 |
| 23  | 1.418      | 2.690      | 127.310    | 12813670 |
| 24  | 1.839      | 3.155      | 143.210    | 13994643 |
| 25  | 1.374      | 2.611      | 122.850    | 14044368 |
| 26  | 1.328      | 2.509      | 127.950    | 12669932 |
| 27  | 1.389      | 2.577      | 144.190    | 13356560 |
| 28  | 1.539      | 2.773      | 136.940    | 13716150 |
| 29  | 1.573      | 2.825      | 145.120    | 13184682 |
| 30  | 1.316      | 2.525      | 123.800    | 12728244 |
| 31  | 1.544      | 2.729      | 127.250    | 13775122 |
| 32  | 1.378      | 2.573      | 154.540    | 14308385 |

**Table 5-4 Range Acceleration Error Statistics** 

| PRN | Range Acceleration | 95% Range          | Max Range          | Samples  |
|-----|--------------------|--------------------|--------------------|----------|
|     | Error RMS          | Acceleration Error | Acceleration Error |          |
|     | $(\mu m/s^2)$      | $(\mu m/s^2)$      | $(\mu m/s^2)$      |          |
| 1   | 10.910             | 20.343             | 1760               | 13641385 |
| 2   | 10.566             | 21.110             | 1550               | 14552025 |
| 3   | 10.588             | 20.339             | 1560               | 14288846 |
| 5   | 10.782             | 25.234             | 1460               | 13619852 |
| 6   | 10.431             | 20.171             | 1250               | 13803707 |
| 7   | 10.746             | 21.277             | 1540               | 12084477 |
| 8   | 12.615             | 21.666             | 1420               | 12588765 |
| 9   | 10.394             | 20.149             | 1470               | 13219355 |
| 10  | 10.945             | 20.431             | 1270               | 13110223 |
| 11  | 10.986             | 21.594             | 1440               | 12198652 |
| 12  | 10.547             | 25.159             | 1410               | 13971132 |
| 13  | 11.551             | 23.866             | 1380               | 13091122 |
| 14  | 10.985             | 21.519             | 1560               | 14109081 |
| 15  | 10.828             | 21.380             | 1360               | 12843836 |
| 16  | 10.775             | 23.875             | 1520               | 13103456 |
| 17  | 10.681             | 23.053             | 1470               | 14503072 |
| 18  | 12.144             | 24.361             | 1630               | 13779501 |
| 19  | 10.561             | 21.457             | 1500               | 13997824 |
| 20  | 10.830             | 22.835             | 1420               | 14262628 |
| 21  | 11.410             | 24.777             | 1450               | 13251680 |
| 22  | 10.610             | 22.624             | 1330               | 13625196 |
| 23  | 10.396             | 21.775             | 1280               | 12813670 |
| 24  | 13.847             | 27.688             | 1440               | 13994643 |
| 25  | 10.513             | 20.286             | 1230               | 14044368 |
| 26  | 10.575             | 20.233             | 1280               | 12669932 |
| 27  | 10.983             | 20.487             | 1490               | 13356560 |
| 28  | 11.534             | 21.552             | 1370               | 13716150 |
| 29  | 11.787             | 23.051             | 1440               | 13184682 |
| 30  | 10.306             | 20.309             | 1290               | 12728244 |
| 31  | 11.325             | 21.364             | 1270               | 13775122 |
| 32  | 10.850             | 20.342             | 1540               | 14308385 |

Figures 5-4, 5-5 and 5-6 are graphical representations of the distributions of the maximum range error, range rate error and range acceleration error for all satellites. The highest maximum range error occurred on satellite PRN 15 with an error of 20.74 meters. Satellite PRN 2 had the lowest maximum range error of 6.782 meters. Figure 5-7 is histogram of satellite range error for all satellites over the entire quarter. Figures 5-8, 5-9, and 5-10 show the individual maximums per satellite for range error, range rate error, and range acceleration error respectively.

**Figure 5-4 Distribution of Daily Max Range Errors** 

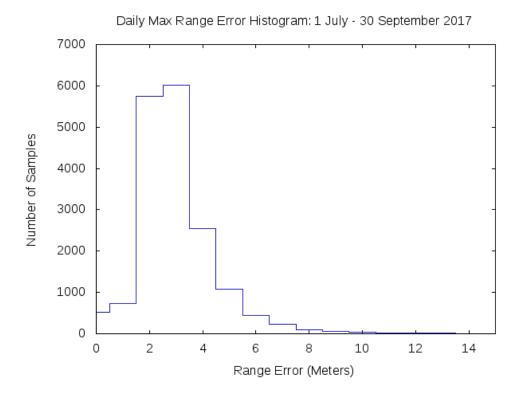



Figure 5-5 Distribution of Daily Max Range Rate Errors

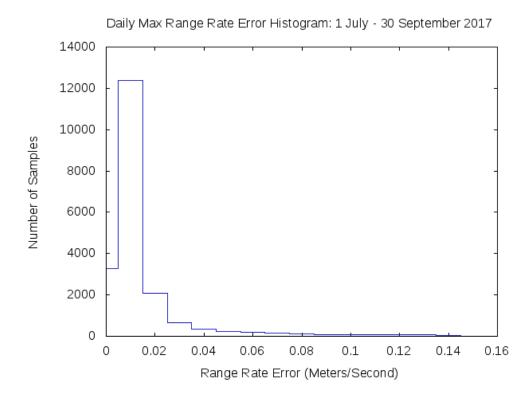
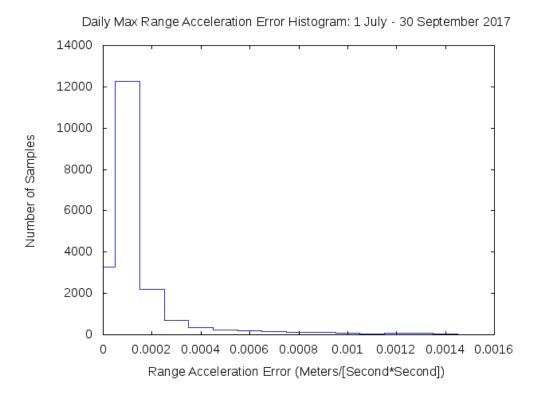




Figure 5-6 Distribution of Daily max Range Acceleration Errors



**Figure 5-7 Range Error Histogram** 

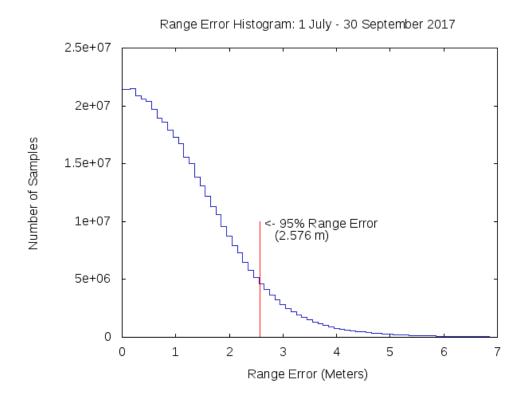



Figure 5-8 Maximum Range Error Per Satellite

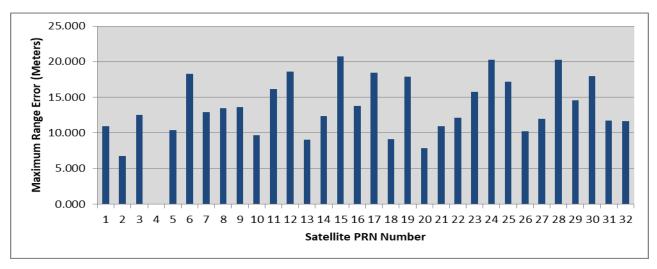
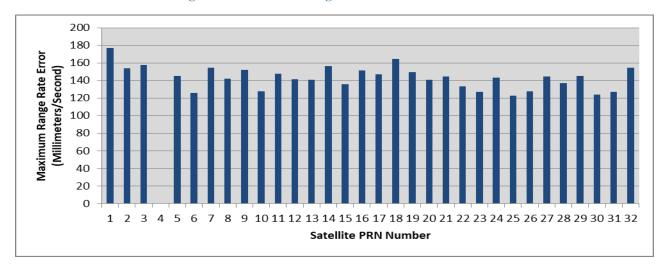
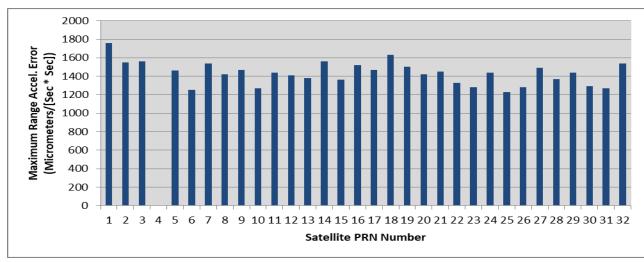





Figure 5-9 Maximum Range Rate Error Per Satellite



**Figure 5-10 Maximum Range Acceleration Error Per Satellite** 



### 6 Solar Storms

Solar storm activity is being monitored in order to assess the possible impact on GPS SPS performance. Solar activity is reported by the Space Weather Prediction Center (SWPC), a division of the National Oceanic and Atmospheric Administration (NOAA). When storm activity is indicated, ionospheric delays of the GPS signal, satellite outages, position accuracy and availability will be analyzed.

The following article was taken from the SEC web site <a href="http://swpc.noaa.gov">http://swpc.noaa.gov</a>. It briefly explains some of the ideas behind the association of the aurora with geomagnetic activity and a bit about how the 'K-index' or 'K-factor' works.

The aurora is caused by the interaction of high-energy particles (usually electrons) with neutral atoms in the earth's upper atmosphere. These high-energy particles can 'excite' (by collisions) valence electrons that are bound to the neutral atom. The 'excited' electron can then 'de-excite' and return back to its initial, lower energy state, but in the process it releases a photon (a light particle). The combined effect of many photons being released from many atoms results in the aurora display that you see.

The details of how high energy particles are generated during geomagnetic storms constitute an entire discipline of space science in its own right. The basic idea, however, is that the Earth's magnetic field (let us say the 'geomagnetic field') is responding to an outwardly propagating disturbance from the Sun. As the geomagnetic field adjusts to this disturbance, various components of the Earth's field change form, releasing magnetic energy and thereby accelerating charged particles to high energies. These particles, being charged, are forced to stream along the geomagnetic field lines. Some end up in the upper part of the earth's neutral atmosphere and the auroral mechanism begins.

An instrument called a magnetometer may also measure the disturbance of the geomagnetic field. At NOAA's operations center magnetometer data is received from dozens of observatories in one-minute intervals. The data is received at or near to 'real-time' and allows NOAA to keep track of the current state of the geomagnetic conditions. In order to reduce the amount of data NOAA converts the magnetometer data into three-hourly indices, which give a quantitative, but less detailed measure of the level of geomagnetic activity. The K-index scale has a range from 0 to 9 and is directly related to the maximum amount of fluctuation (relative to a quiet day) in the geomagnetic field over a three-hour interval.

The K-index is therefore updated every three hours. The K-index is also necessarily tied to a specific geomagnetic observatory. For locations where there are no observatories, one can only estimate what the local K-index would be by looking at data from the nearest observatory, but this would be subject to some errors from time to time because geomagnetic activity is not always spatially homogenous.

Another item of interest is that the location of the aurora usually changes geomagnetic latitude as the intensity of the geomagnetic storm changes. The location of the aurora often takes on an 'oval-like' shape and is appropriately called the auroral oval.

Figures 6-1 through 6-3 show the K-index for three time periods with significant solar activity. Although there were other days with increased solar activity, these time periods were selected as examples. (See Appendix B for the actual geomagnetic data for this reporting period.)

Figure 6-1 K-Index for 7-9 September 2017

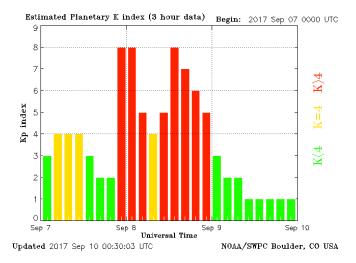
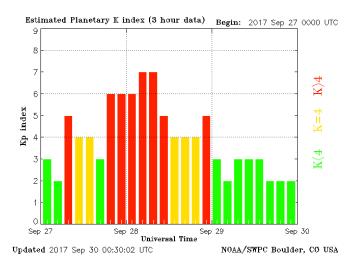




Figure 6-2 K-Index for 27-29 September 2017



**Figure 6-3 K-Index for 15-17 July 2017** 

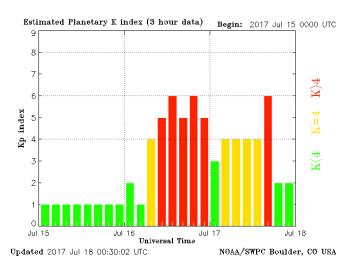



Table 6-1 shows the position accuracy information for the quarter's worst-case storm day, September 8, 2017 (see Figure 6-1). The GPS SPS performance met all requirements during all storms that occurred during this quarter.

Table 6-1 Horizontal & Vertical Accuracy Statistics for September 8, 2016

| Site              | 95%<br>Horizontal | 95%<br>Vertical | Maximum<br>Horizontal | Maximum<br>Vertical |
|-------------------|-------------------|-----------------|-----------------------|---------------------|
|                   | (Meters)          | (Meters)        | (Meters)              | (Meters)            |
| Albuquerque       | 2.141             | 6.879           | 2.825                 | 7.807               |
| Anchorage         | 2.538             | 5.040           | 3.723                 | 7.973               |
| Atlanta           | 1.636             | 6.555           | 5.109                 | 8.025               |
| Barrow            | 1.744             | 4.672           | 2.847                 | 6.850               |
| Bethel            | 2.650             | 5.037           | 3.965                 | 6.394               |
| Billings          | 2.085             | 5.941           | 2.814                 | 6.924               |
| Boston            | 2.309             | 4.526           | 3.309                 | 7.029               |
| Cleveland         | 1.862             | 5.380           | 4.363                 | 6.680               |
| Cold Bay          | 2.091             | 5.166           | 3.418                 | 6.184               |
| Fairbanks         | 2.000             | 4.828           | 3.037                 | 7.545               |
| Gander            | 1.734             | 3.408           | 2.988                 | 4.418               |
| Honolulu          | 3.717             | 5.828           | 5.940                 | 6.726               |
| Houston           | 2.277             | 7.236           | 3.279                 | 8.186               |
| Iqaluit           | 1.502             | 3.721           | 2.661                 | 8.209               |
| Juneau            | 2.542             | 5.046           | 3.450                 | 7.598               |
| Kansas City       | 1.926             | 6.231           | 5.321                 | 7.462               |
| Kotzebue          | 2.184             | 4.801           | 3.114                 | 7.008               |
| Los Angeles       | 1.936             | 7.010           | 2.367                 | 7.595               |
| Merida            | 5.752             | 5.409           | 9.892                 | 8.247               |
| Miami             | 3.956             | 5.338           | 5.236                 | 8.005               |
| Minneapolis       | 2.135             | 5.188           | 2.939                 | 6.634               |
| Oakland           | 2.279             | 7.105           | 2.933                 | 7.744               |
| Salt Lake City    | 3.757             | 5.684           | 6.658                 | 7.746               |
| San Jose Del Cabo | 3.522             | 4.040           | 4.787                 | 4.967               |
| San Juan          | n 2.229 5.868     |                 | 3.114                 | 6.527               |
| Seattle           | 8.581             | 6.760           | 11.499                | 14.844              |
| Tapachula         | 1.532             | 5.724           | 2.825                 | 7.143               |
| Washington, DC    | 2.141             | 6.879           | 2.825                 | 7.807               |

### 7 IGS Data

GPS SPS accuracy performance was evaluated at a selection of high rate IGS stations<sup>(1)</sup>. The IGS is a voluntary federation of many worldwide agencies that pool resources and permanent GNSS station data to generate precise GNSS products.

Sites with high data rate (1 Hz) with good availability which are outside of the WAAS service area that also provide a good geographic distribution have been selected. The 3 Russian Federation sites, MOBN, NRIL, and PETS, were not in service. To facilitate differentiating between GPS accuracy issues and receiver tracking problems, an automatic data screening function excluded errors greater than 500 meters and or times when VDOP or HDOP were greater than 10. The remaining receiver tracking issues are still included in the processing and are forced into the 50.1-meter histogram bin. These issues cause the outliers seen in the 99.99% statistics and are visible in the 95% accuracy trend plots.

High quality broadcast navigation data and Klobuchar model data is created by voting across all available IGS high rate RINEX navigation data. Some manual review may be necessary to recover missing navigation data where the number of IGS sites reporting navigation data was below the voting threshold (i.e. 4).

Table 7.1 and Figure 7-1 show the IGS site information and locations. The Russian Federation sites were unavailable for this reporting period. Table 7.2 shows the GPS SPS Accuracy Performance observed at a selection of High Rate IGS sites. Figure 7-3 shows the 95% horizontal accuracy trends at these sites. Figure 7-4 shows the 95% vertical accuracy trends at these sites. A value of zero indicates no data. The ramping error in the trend plots for the equatorial sites is due to seasonal variations in the ionosphere that cannot be corrected by the Klobuchar thin shell model of the ionosphere utilized by single frequency GPS SPS receivers.

(1) J.M. Dow, R.E. Neilan, G. Gendt, "The International GPS Service (IGS): Celebrating the 10th Anniversary and Looking to the Next Decade," Adv. Space Res. 36 vol. 36, no. 3, pp. 320-326, 2005. Doi: 10.1016/j.asr.2005.05.125

| ID    | City                    | Country            |
|-------|-------------------------|--------------------|
| BOGT  | Bogota                  | Colombia           |
| GLPS  | Puerto Ayora            | Ecuador            |
| GUAM  | Dededo                  | Guam               |
| IISC  | Bangalore               | India              |
| KIRU  | Kiruna                  | Sweden             |
| KOUR  | Kourou                  | French Guyana      |
| MADR  | Robledo                 | Spain              |
| MAL2  | Malindi                 | Kenya              |
| MAS1  | Maspalomas              | Spain              |
| MATE  | Matera                  | Italy              |
| MOBN* | Obninsk                 | Russian Federation |
| NNOR  | New Norcia              | Australia          |
| NRIL* | Norilsk                 | Russian Federation |
| PETS* | Petropavlovsk-Kamchatka | Russian Federation |
| POL2  | Bishkek                 | Kyrgyzstan         |
| SUTM  | Sutherland              | South Africa       |
| TIDB  | Tidbinbilla             | Australia          |
| UNSA  | Salta                   | Argentina          |
| USUD  | Usuda                   | Japan              |

**Table 7-1 Selected IGS Site Information** 

Selected IGS Sites with High Data Rate 4th Qtr 2011

WIRL

MOBIN

PETS

WAS 1

BOGT -KOUR

WISC

GUAM

NHOR

SANT

SANT

SOTM

NHOR

TIDB

Longitude

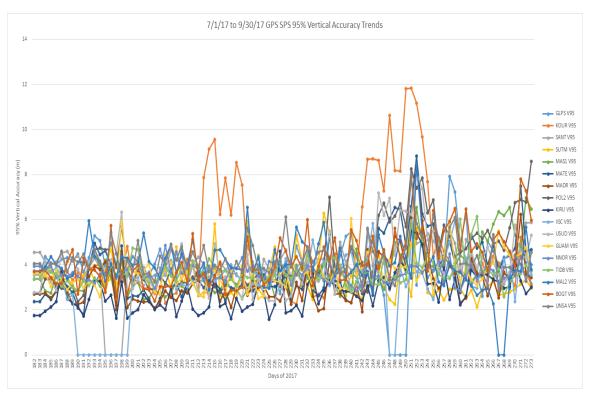

**Figure 7-1 Selected IGS Site Locations** 

Table 7-2 GPS SPS Performance at Selected High Rate IGS Sites

| Site  | 95%        | 95%       | 99.99%     | 99.99%    | Percent   |
|-------|------------|-----------|------------|-----------|-----------|
|       | Horizontal | Vertical  | Horizontal | Vertical  | Data      |
|       | Error (m)  | Error (m) | Error (m)  | Error (m) | Available |
| BOGT  | 2.68       | 6.69      | 7.08       | 12.95     | 97.96%    |
| GLPS  | 2.35       | 6.47      | 4.35       | 11.86     | 98.85%    |
| GUAM  | 1.65       | 7.26      | 4.14       | 17.3      | 98.27%    |
| IISC  | 1.82       | 6.61      | 4.48       | 12.89     | 67.15%    |
| KIRU  | 1.29       | 2.62      | 2.54       | 5.72      | 98.91%    |
| KOUR  | 2.23       | 7.59      | 4.36       | 12.92     | 98.18%    |
| MADR  | 2.13       | 3.29      | 5.48       | 7.33      | 98.85%    |
| MAL2  | 2.9        | 5.18      | 11.1       | 24.33     | 92.57%    |
| MAS1  | 3.46       | 6.03      | 7.92       | 13.52     | 98.88%    |
| MATE  | 2.9        | 4.13      | 10.07      | 22.12     | 93.19%    |
| MOBN* | 0          | 0         | 0          | 0         | 0.00%     |
| NNOR  | 1.52       | 3.79      | 5.47       | 7.02      | 98.90%    |
| NRIL* | 0          | 0         | 0          | 0         | 0.00%     |
| PETS* | 0          | 0         | 0          | 0         | 0.00%     |
| POL2  | 2.47       | 4.26      | 11.32      | 19.73     | 80.72%    |
| SUTM  | 3.3        | 4.85      | 8.16       | 15.13     | 96.62%    |
| TIDB  | 1.87       | 3.31      | 3.39       | 7.49      | 95.41%    |
| UNSA  | 1.71       | 3.11      | 3.87       | 6.91      | 97.83%    |
| USUD  | 3.43       | 5.71      | 6.35       | 12.42     | 94.02%    |
| BOGT  | 2.47       | 3.84      | 5.58       | 10.71     | 97.92%    |

Figure 7-2 GPS SPS 95% Horizontal Accuracy Trends at Selected IGS Sites





#### 8 RAIM Performance

Receiver autonomous integrity monitoring (RAIM) is a technology developed to assess the integrity of GPS signals in a GPS receiver system. It is especially important in safety critical GPS applications, such as aviation. In order for a GPS receiver to perform RAIM or fault detection (FD) function, a minimum of five visible satellites with satisfactory geometry must be visible. RAIM has various kinds of implementations; one of them performs consistency checks between all position solutions obtained with various subsets of the visible satellites. The receiver provides an alert to the pilot if the consistency checks fail.

Availability is a performance indicator of the RAIM algorithm. Availability is a function of the geometry of the constellation in view and of other environmental conditions. All the analysis performed here is utilizing the "Fault-Detection with no baro-aiding and SA off" RAIM implementation. Additional modes will be assessed at a future date. The test statistic used is a function of the pseudorange measurement residual (the difference between the expected measurement and the observed measurement) and the amount of redundancy. The test statistic is compared with a threshold value, and is determined based on the requirements for the probability of false alarm (Pfa), the probability of missed detection (Pmd), and the expected measurement noise. In aviation systems, the Pfa is fixed at 1/15000.

The horizontal protection limit (HPL) is a figure which represents the radius of a circle in the horizontal plane, centered on the GPS position solution, and is guaranteed to contain the true position of the receiver to within the specifications of the RAIM scheme (i.e. meets the Pfa and Pmd). The HPL is calculated as a function of the RAIM threshold and the satellite geometry at the time of the measurement. The HPL is compared with the horizontal alarm limit (HAL) to determine if RAIM is available. The RNP values shown here are measured in nautical miles, the computed HPL must be less than the RNP value for the service to be available.

### 8.1 Site Performance

Table 8-1 shows the RAIM performance for the twenty-eight sites evaluated. For all sites collected, the minimum percent of time in RNP 0.1 mode was 99.904% at Salt Lake City, Utah. The minimum percent of time spent in RNP 0.3 mode was 100% at all locations evaluated. The maximum 99% HPL value was 146.64 meters at Honolulu, HI.

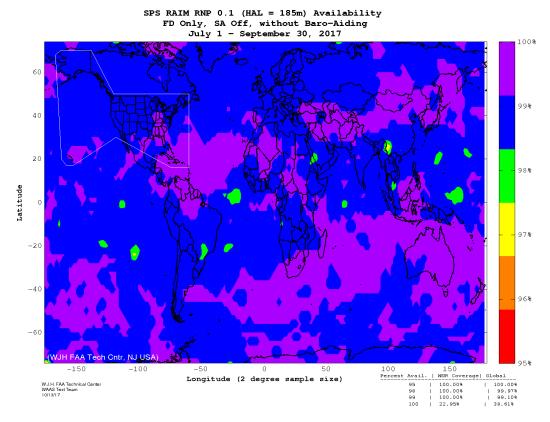
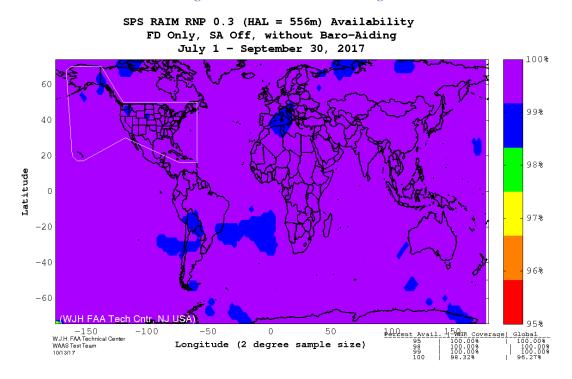
**Table 8-1 RAIM Site Statistics** 

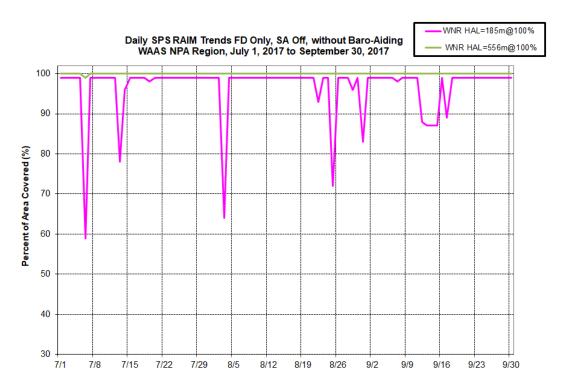
| CITY              | 99% HPL | Percent RNP 0.1 | Percent RNP 0.3 |
|-------------------|---------|-----------------|-----------------|
| Albuquerque       | 101.79  | 99.999          | 100             |
| Anchorage         | 125.05  | 99.986          | 100             |
| Atlanta           | 98.77   | 100             | 100             |
| Barrow            | 102.01  | 100             | 100             |
| Bethel            | 127.06  | 99.998          | 100             |
| Billings          | 112.63  | 99.953          | 100             |
| Boston            | 114.78  | 99.986          | 100             |
| Cleveland         | 108.73  | 99.999          | 100             |
| Cold Bay          | 123.19  | 99.996          | 100             |
| Fairbanks         | 123.65  | 99.992          | 100             |
| Gander            | 128.57  | 99.908          | 100             |
| Honolulu          | 146.64  | 100             | 100             |
| Houston           | 94.64   | 100             | 100             |
| Iqaluit           | 124.55  | 99.988          | 100             |
| Juneau            | 124.30  | 99.968          | 100             |
| Kansas City       | 102.02  | 99.984          | 100             |
| Kotzebue          | 112.50  | 99.993          | 100             |
| Los Angeles       | 103.29  | 99.971          | 100             |
| Merida            | 83.05   | 99.995          | 100             |
| Miami             | 115.27  | 99.992          | 100             |
| Minneapolis       | 116.81  | 99.950          | 100             |
| Oakland           | 100.75  | 99.969          | 100             |
| Salt Lake City    | 111.60  | 99.904          | 100             |
| San Jose Del Cabo | 79.35   | 100             | 100             |
| San Juan          | 82.33   | 100             | 100             |
| Seattle           | 100.58  | 99.967          | 100             |
| Tapachula         | 94.81   | 99.991          | 100             |
| Washington DC     | 106.49  | 99.993          | 100             |

## 8.2 RAIM Coverage

Figures 8-1 through 8-2 show the world wide RAIM coverage for both RNP 0.1 and RNP 0.3 respectively. Figures 8-3 through 8-4 show the daily RAIM coverage trends between 1 July and 30 September 2017.

Figure 8-1 RAIM RNP 0.1 Coverage



Figure 8-2 RAIM RNP 0.3 Coverage



WNR HAL=185m@100% Daily SPS RAIM Trends FD Only, SA Off, without Baro-Aiding WAAS NPA Region, July 1, 2017 to September 30, 2017 WNR HAL=556m@100% 100 90 Percent of Area Covered (%) 80 70 60 50 40 30 7/1 8/5 8/12 7/8 7/15 7/22 7/29 8/19 8/26 9/2 9/9 9/16 9/23 9/30

Figure 8-3 RAIM World Wide Coverage Trend





## 8.3 RAIM Airport Analysis

Figures 8-5 and 8-6 shows RAIM RNP 0.1 and RNP 0.3 availability at all U.S. and Canadian airports that have an RNAV (GPS) published approach or better.

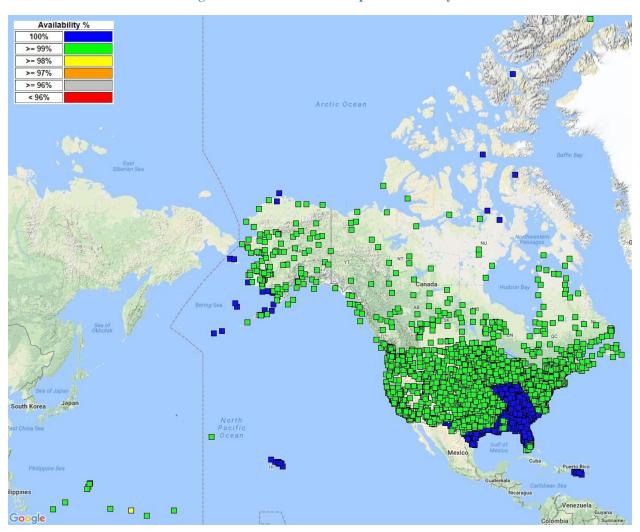



Figure 8-5 RAIM RNP 0.1 Airport Availability

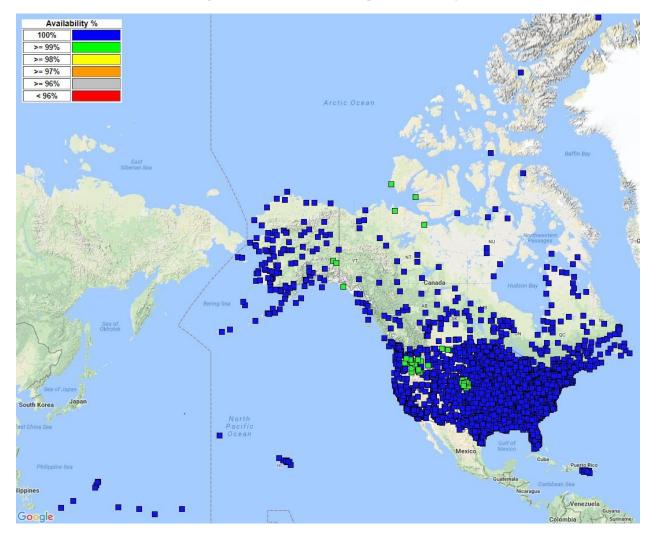



Figure 8-6 RAIM RNP 0.3 Airport Availability

Figures 8-7 and 8-8 respectively show the number of RAIM RNP 0.1 and RAIM RNP 0.3 outages for every airport in the U.S. and Canada that have a RNAV (GPS) published approach or better.

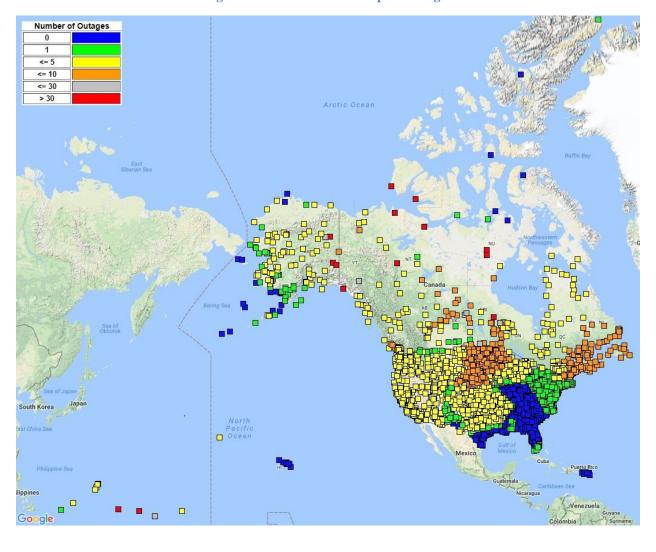



Figure 8-7 RAIM RNP 0.1 Airport Outages

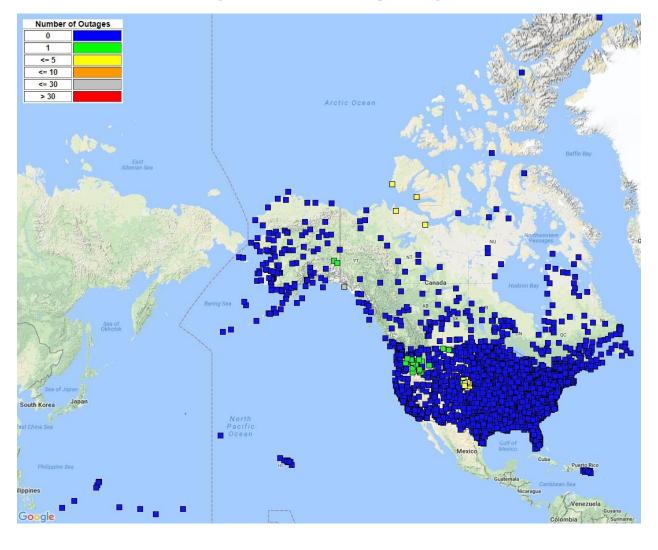



Figure 8-8 RAIM RNP 0.3 Airport Outages

## 9 GPS Test NOTAMs Summary

**GPS test NOTAM:** <u>Global Positioning System test Notices to Airmen</u> - GPS test NOTAMs are issued in the event that GPS is predicted to be unreliable and/or unavailable at a defined location for specific times, as indicated in the NOTAM, due to scheduled testing events.

| Status and Problem Reporting                                                                             | Conditions and Constraints |
|----------------------------------------------------------------------------------------------------------|----------------------------|
| Scheduled event affecting service                                                                        | For any SPS SIS            |
| <ul> <li>Appropriate GPS Test NOTAM issued to<br/>the FAA at least 5 hours prior to the event</li> </ul> | 1 01 41.1, 21.2 21.2       |

#### 9.1 GPS Test NOTAMs Issued

GPS test NOTAMs were tracked and trended from GPS test NOTAMs posted on the FAA Pilot Web website (https://pilotweb.nas.faa.gov/PilotWeb/). During this reporting period, 1 July through 30 September 2017, there were a total of 103 GPS test NOTAMs. The total number of days affected in this reporting period is 79. Tables 8.1 and 8.2 below list the statistics of areas affected and durations. Note that the minimum, average, and maximum durations are on a per GPS test NOTAM basis.

**Table 9-1 GPS test NOTAM Durations** 

| Cumulative Duration | 601.1 hours |
|---------------------|-------------|
| Minimum Duration    | 1.00 hours  |
| Media Duration      | 4.50 hours  |
| Average Duration    | 5.84 hours  |
| Maximum Duration    | 23.97 hours |

Table 9-2 GPS Test NOTAM Affected Areas (Square Miles) by Altitude

|         | 40,000 feet | 25,000 feet | 10,000 feet | 4,000 feet | 50 feet |
|---------|-------------|-------------|-------------|------------|---------|
| Minimum | 10,401      | 9,989       | 8,803       | 8,055      | 2,812   |
| Average | 390,035     | 297,255     | 176,656     | 147,594    | 101,073 |
| Maximum | 1,177,490   | 1,124,967   | 783,634     | 758,560    | 575,731 |

### 9.2 Tracking and Trending of GPS Test NOTAMs

The GPS Test NOTAMs that are tracked and trended for this reporting period were done with a specialized software analysis tool that is designed to not only trend but also archive GPS Test NOTAMs. It is designed to trend archived GPS Test NOTAMs for any specified time frame. In addition to the data provided in this report, this tool will provide all data presented here along with airports with affected procedures via a web interface. The web interface is available at the following URL: <a href="http://waas.faa.gov/static/sog/notam/index.html">http://waas.faa.gov/static/sog/notam/index.html</a>.

The five plots below illustrate a visual depiction of the affected areas at their corresponding altitudes along with the impacted RNAV routes (indicated in red). Note that some GPS Test NOTAMs occupy the same area and position but differ in effective dates and/or durations.

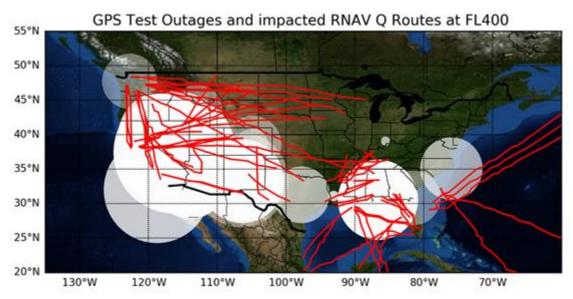



Figure 9-1 GPS Test NOTAMs @ FL400



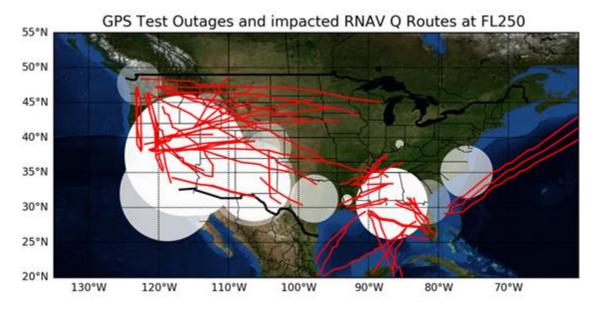



Figure 9-3 GPS NOTAMs @ 10k Feet

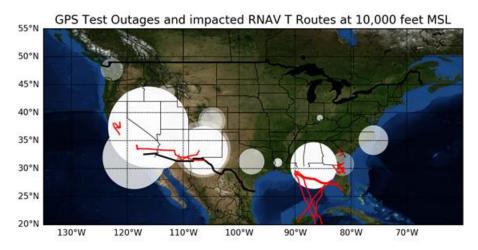



Figure 9-4 GPS NOTAMs @ 4k Feet

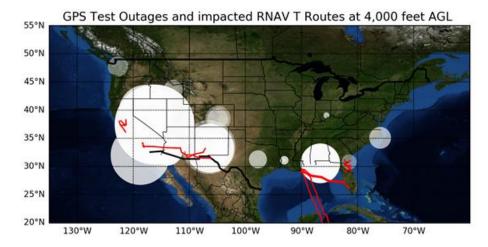
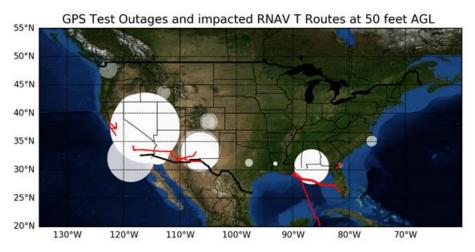




Figure 9-5 GPS NOTAMs @ 50 Feet



## 9.3 GPS Availability

The impacts to GPS availability are listed below for the corresponding locations and times. The percent impact to GPS availability over CONUS indicates that GPS is impacted for X % of the total area (total area of CONUS), centered at the indicated latitude/longitude. The last five columns in each table represent the impact to GPS availability at the corresponding altitude range. Altitudes 4,000 feet and under are with respect to above ground level (AGL), all remaining altitudes are with respect to MSL (mean sea level). Each row of the following table represents one GPS Test NOTAM. The remaining tables each represent one GPS Test NOTAM.

Table 9-3 NOTAM Impact to GPS Availability

|            |            |              |               |       | Percent | Impact a | nt Each S | ite   |
|------------|------------|--------------|---------------|-------|---------|----------|-----------|-------|
| START DATE | END DATE   | LAT          | LONG          | 50    | 4000    | 10000    | FL250     | FL400 |
| 2017-07-01 | 2017-07-01 |              |               |       |         |          |           |       |
| 03:00:00   | 10:00:00   | 303251.0000N | 863904.0000W  | 3.10  | 4.02    | 5.47     | 7.64      | 9.60  |
| 2017-07-02 | 2017-07-02 |              |               |       |         |          |           |       |
| 03:00:00   | 22:30:00   | 352114.0000N | 1163329.0000W | 2.37  | 2.37    | 3.72     | 6.60      | 8.26  |
| 2017-07-03 | 2017-07-03 |              |               |       |         |          |           |       |
| 03:00:00   | 13:30:00   | 352114.0000N | 1163329.0000W | 2.37  | 2.37    | 3.72     | 6.60      | 8.26  |
| 2017-07-08 | 2017-07-08 |              |               |       |         |          |           |       |
| 03:00:00   | 09:50:00   | 303251.0000N | 863904.0000W  | 3.10  | 4.02    | 5.47     | 7.64      | 9.60  |
| 2017-07-09 | 2017-07-12 |              |               |       |         |          |           |       |
| 03:00:00   | 07:00:00   | 372459.0000N | 1161137.0000W | 14.24 | 17.23   | 17.54    | 22.91     | 23.74 |
| 2017-07-10 | 2017-07-10 |              |               |       |         |          |           |       |
| 03:00:00   | 09:59:00   | 303251.0000N | 863904.0000W  | 3.10  | 4.02    | 5.47     | 7.64      | 9.60  |
| 2017-07-11 | 2017-07-11 |              |               |       |         |          |           |       |
| 03:00:00   | 09:59:00   | 303251.0000N | 863904.0000W  | 3.10  | 4.02    | 5.47     | 7.64      | 9.60  |
| 2017-07-12 | 2017-07-12 |              |               |       |         |          |           |       |
| 03:00:00   | 09:59:00   | 303251.0000N | 863904.0000W  | 3.10  | 4.02    | 5.47     | 7.64      | 9.60  |
| 2017-07-13 | 2017-07-13 |              |               |       |         |          |           |       |
| 03:00:00   | 09:59:00   | 303251.0000N | 863904.0000W  | 3.10  | 4.02    | 5.47     | 7.64      | 9.60  |
| 2017-07-13 | 2017-07-15 |              |               |       |         |          |           |       |
| 04:30:00   | 07:00:00   | 372459.0000N | 1161137.0000W | 14.24 | 17.23   | 17.54    | 22.91     | 23.74 |
| 2017-07-14 | 2017-07-14 |              |               |       |         |          |           |       |
| 03:00:00   | 09:59:00   | 303251.0000N | 863904.0000W  | 3.10  | 4.02    | 5.47     | 7.64      | 9.60  |
| 2017-07-16 | 2017-07-19 |              |               |       |         |          |           |       |
| 03:00:00   | 07:00:00   | 372459.0000N | 1161137.0000W | 14.24 | 17.23   | 17.54    | 22.91     | 23.74 |
| 2017-07-16 | 2017-07-22 |              |               |       |         |          |           |       |
| 07:00:00   | 13:00:00   | 433734.0000N | 1125400.0000W | 0.62  | 1.44    | 0.83     | 3.51      | 5.57  |
| 2017-07-17 | 2017-07-19 |              |               |       |         |          |           |       |
| 18:30:00   | 21:00:00   | 325413.0000N | 1135609.0000W | 1.44  | 2.48    | 2.58     | 4.44      | 6.71  |
| 2017-07-19 | 2017-07-19 |              |               |       |         |          |           |       |
| 03:00:00   | 07:00:00   | 372459.0000N | 1161137.0000W | 14.24 | 17.23   | 17.54    | 22.91     | 23.74 |
| 2017-07-19 | 2017-07-19 |              |               |       |         |          |           |       |
| 14:00:00   | 21:00:00   | 310704.0000N | 930913.0000W  | 0.10  | 0.10    | 0.10     | 0.10      | 0.10  |
| 2017-07-19 | 2017-07-19 |              |               |       |         |          |           |       |
| 21:00:00   | 22:30:00   | 321132.0000N | 1060819.0000W | 0.83  | 2.17    | 1.65     | 3.82      | 5.78  |
| 2017-07-20 | 2017-07-20 |              |               |       |         |          |           |       |
| 04:30:00   | 07:00:00   | 372459.0000N | 1161137.0000W | 14.24 | 17.23   | 17.54    | 22.91     | 23.74 |
| 2017-07-20 | 2017-07-21 |              |               |       |         |          |           |       |
| 11:00:00   | 12:59:00   | 304800.0000N | 813100.0000W  | 0.00  | 0.72    | 1.24     | 3.20      | 4.64  |
| 2017-07-20 | 2017-07-21 |              |               |       |         |          |           |       |
| 18:30:00   | 22:30:00   | 321132.0000N | 1060819.0000W | 0.83  | 2.17    | 1.65     | 3.82      | 5.78  |

|                        |                        |                |                 | Percent Impact at Each S |       |       |       | ite    |
|------------------------|------------------------|----------------|-----------------|--------------------------|-------|-------|-------|--------|
| START DATE             | END DATE               | LAT            | LONG            | 50                       | 4000  | 10000 | FL250 | FL400  |
| 2017-07-21             | 2017-07-22             | LAI            | LONG            | 30                       | 4000  | 10000 | FL250 | r L400 |
| 04:30:00               | 07:00:00               | 331424.0000N   | 1062147.0000W   | 4.33                     | 6.81  | 6.81  | 9.29  | 11.76  |
| 2017-07-24             | 2017-07-26             | 331121.000011  | 1002117.000077  | 1.55                     | 0.01  | 0.01  | 7.27  | 11.70  |
| 13:00:00               | 23:00:00               | 310535.0000N   | 930350.0000W    | 0.10                     | 0.10  | 0.10  | 0.10  | 0.10   |
| 2017-07-24             | 2017-07-24             |                | 7000000000      | 0.10                     | 0.10  | 0.10  | 0.10  | 0.10   |
| 19:00:00               | 22:59:00               | 474356.0000N   | 1224354.0000W   | 1.14                     | 1.34  | 1.75  | 2.99  | 4.13   |
| 2017-07-25             | 2017-07-26             |                |                 |                          |       |       |       |        |
| 18:30:00               | 21:00:00               | 325413.0000N   | 1135609.0000W   | 1.44                     | 2.48  | 2.58  | 4.44  | 6.71   |
| 2017-07-26             | 2017-07-26             |                |                 |                          |       |       |       |        |
| 03:00:00               | 07:00:00               | 372459.0000N   | 1161137.0000W   | 14.24                    | 17.23 | 17.54 | 22.91 | 23.74  |
| 2017-07-27             | 2017-07-28             |                |                 |                          |       |       |       |        |
| 04:30:00               | 07:00:00               | 372459.0000N   | 1161137.0000W   | 14.24                    | 17.23 | 17.54 | 22.91 | 23.74  |
| 2017-07-27             | 2017-07-29             |                |                 |                          |       |       |       |        |
| 13:00:00               | 23:00:00               | 310535.0000N   | 930350.0000W    | 0.10                     | 0.10  | 0.10  | 0.10  | 0.10   |
| 2017-07-27             | 2017-07-27             |                |                 |                          |       |       |       |        |
| 18:30:00               | 22:30:00               | 321132.0000N   | 1060819.0000W   | 0.83                     | 2.17  | 1.65  | 3.82  | 5.78   |
| 2017-07-28             | 2017-07-29             |                |                 |                          |       |       |       |        |
| 18:00:00               | 03:00:00               | 645447.0000N   | 1464448.0000W   | 0.00                     | 0.00  | 0.00  | 0.00  | 0.00   |
| 2017-07-28             | 2017-07-28             |                |                 |                          |       |       |       |        |
| 18:30:00               | 21:00:00               | 325413.0000N   | 1135609.0000W   | 1.44                     | 2.48  | 2.58  | 4.44  | 6.71   |
| 2017-07-28             | 2017-07-28             |                |                 |                          |       |       |       |        |
| 21:00:00               | 22:30:00               | 321132.0000N   | 1060819.0000W   | 0.83                     | 2.17  | 1.65  | 3.82  | 5.78   |
| 2017-07-29             | 2017-07-29             |                |                 |                          |       |       |       |        |
| 04:30:00               | 07:00:00               | 331424.0000N   | 1062147.0000W   | 4.33                     | 6.81  | 6.81  | 9.29  | 11.76  |
| 2017-07-29             | 2017-07-29             |                |                 |                          |       |       |       |        |
| 18:30:00               | 21:00:00               | 325413.0000N   | 1135609.0000W   | 1.44                     | 2.48  | 2.58  | 4.44  | 6.71   |
| 2017-07-29             | 2017-07-30             |                |                 |                          |       |       |       |        |
| 18:30:00               | 22:30:00               | 321132.0000N   | 1060819.0000W   | 0.83                     | 2.17  | 1.65  | 3.82  | 5.78   |
| 2017-07-30             | 2017-07-31             |                |                 |                          |       |       |       |        |
| 03:00:00               | 07:00:00               | 331424.0000N   | 1062147.0000W   | 4.33                     | 6.81  | 6.81  | 9.29  | 11.76  |
| 2017-07-30             | 2017-07-31             | 240,525,000034 | 000050 000044   | 0.40                     | 0.40  | 0.40  | 0.10  | 0.40   |
| 13:00:00               | 23:00:00               | 310535.0000N   | 930350.0000W    | 0.10                     | 0.10  | 0.10  | 0.10  | 0.10   |
| 2017-07-31             | 2017-08-04             | C45447 0000N   | 1464440 0000    | 0.00                     | 0.00  | 0.00  | 0.00  | 0.00   |
| 18:00:00               | 03:00:00               | 645447.0000N   | 1464448.0000W   | 0.00                     | 0.00  | 0.00  | 0.00  | 0.00   |
| 2017-07-31             | 2017-07-31             | 225412 0000N   | 1125600 0000W   | 1 44                     | 2.48  | 2.58  | 1 11  | 671    |
| 18:30:00<br>2017-08-01 | 21:00:00<br>2017-08-05 | 325413.0000N   | 1135609.0000W   | 1.44                     | 2.40  | 2.36  | 4.44  | 6.71   |
| 00:10:00               | 03:00:00               | 645447.0000N   | 1464448.0000W   | 0.00                     | 0.00  | 0.00  | 0.00  | 0.00   |
| 2017-08-01             | 2017-08-02             | 043447.000011  | 1404446.0000 W  | 0.00                     | 0.00  | 0.00  | 0.00  | 0.00   |
| 03:00:00               | 12:00:00               | 331424.0000N   | 1062147.0000W   | 4.33                     | 6.81  | 6.81  | 9.29  | 11.76  |
| 2017-07-21             | 2017-07-22             | 331424.000011  | 1002147.0000 W  | 4.33                     | 0.61  | 0.01  | 9.29  | 11.70  |
| 04:30:00               | 07:00:00               | 331424.0000N   | 1062147.0000W   | 4.33                     | 6.81  | 6.81  | 9.29  | 11.76  |
| 2017-07-24             | 2017-07-26             | 331424.000011  | 1002147.0000 11 | 7.33                     | 0.01  | 0.01  | 7.27  | 11.70  |
| 13:00:00               | 23:00:00               | 310535.0000N   | 930350.0000W    | 0.10                     | 0.10  | 0.10  | 0.10  | 0.10   |
| 2017-07-24             | 2017-07-24             | 510555.00001   | >50550.0000 11  | 0.10                     | 0.10  | 0.10  | 0.10  | 0.10   |
| 19:00:00               | 22:59:00               | 474356.0000N   | 1224354.0000W   | 1.14                     | 1.34  | 1.75  | 2.99  | 4.13   |
| 2017-07-25             | 2017-07-26             |                |                 |                          | 2.01  | 2.75  | ,,    |        |
| 18:30:00               | 21:00:00               | 325413.0000N   | 1135609.0000W   | 1.44                     | 2.48  | 2.58  | 4.44  | 6.71   |
| 2017-07-26             | 2017-07-26             | 322 123.000011 |                 |                          |       |       |       |        |
| 03:00:00               | 07:00:00               | 372459.0000N   | 1161137.0000W   | 14.24                    | 17.23 | 17.54 | 22.91 | 23.74  |
| 2017-07-27             | 2017-07-28             |                |                 | T                        |       |       |       |        |
| 04:30:00               | 07:00:00               | 372459.0000N   | 1161137.0000W   | 14.24                    | 17.23 | 17.54 | 22.91 | 23.74  |

|                        |                        |                     |                 |      | Percent Impact at Each Site |       |       |       |  |  |  |
|------------------------|------------------------|---------------------|-----------------|------|-----------------------------|-------|-------|-------|--|--|--|
| START DATE             | END DATE               | LAT                 | LONG            | 50   | 4000                        | 10000 | FL250 | FL400 |  |  |  |
| 2017-08-01             | 2017-08-01             | LAI                 | LONG            | 30   | 4000                        | 10000 | TL230 | TL400 |  |  |  |
| 18:30:00               | 22:30:00               | 325413.0000N        | 1135609.0000W   | 1.44 | 2.48                        | 2.58  | 4.44  | 6.71  |  |  |  |
| 2017-08-03             | 2017-08-04             | 323 113.000011      | 1133003.000011  | 1    | 2.10                        | 2.50  |       | 0.71  |  |  |  |
| 04:30:00               | 12:00:00               | 331424.0000N        | 1062147.0000W   | 4.33 | 6.81                        | 6.81  | 9.29  | 11.76 |  |  |  |
| 2017-08-03             | 2017-08-04             | 331121.00001        | 1002117.000077  | 1.55 | 0.01                        | 0.01  | 7.27  | 11.70 |  |  |  |
| 18:30:00               | 22:30:00               | 325413.0000N        | 1135609.0000W   | 1.44 | 2.48                        | 2.58  | 4.44  | 6.71  |  |  |  |
| 2017-08-05             | 2017-08-06             |                     |                 |      |                             |       | ·     |       |  |  |  |
| 07:00:00               | 13:00:00               | 320000.0000N        | 1184500.0000W   | 2.37 | 3.82                        | 4.23  | 6.30  | 8.36  |  |  |  |
| 2017-08-07             | 2017-08-07             |                     |                 |      |                             |       |       |       |  |  |  |
| 18:30:00               | 22:30:00               | 331424.0000N        | 1062147.0000W   | 3.20 | 4.23                        | 4.64  | 8.67  | 10.53 |  |  |  |
| 2017-08-08             | 2017-08-11             |                     |                 |      |                             |       |       |       |  |  |  |
| 00:10:00               | 03:00:00               | 645447.0000N        | 1464448.0000W   | 0.00 | 0.00                        | 0.00  | 0.00  | 0.00  |  |  |  |
| 2017-08-08             | 2017-08-12             |                     |                 |      |                             |       |       |       |  |  |  |
| 03:00:00               | 12:00:00               | 332659.0000N        | 1063329.0000W   | 5.16 | 8.26                        | 8.88  | 12.18 | 14.96 |  |  |  |
| 2017-08-08             | 2017-08-08             |                     |                 |      |                             |       |       |       |  |  |  |
| 18:00:00               | 19:30:00               | 645447.0000N        | 1464448.0000W   | 0.00 | 0.00                        | 0.00  | 0.00  | 0.00  |  |  |  |
| 2017-08-09             | 2017-08-12             |                     |                 |      |                             |       |       |       |  |  |  |
| 08:00:00               | 13:00:00               | 350236.0000N        | 1174651.0000W   | 1.34 | 1.96                        | 2.17  | 4.13  | 6.19  |  |  |  |
| 2017-08-09             | 2017-08-09             |                     |                 |      |                             |       |       |       |  |  |  |
| 21:00:00               | 22:00:00               | 383010.0000N        | 1045547.0000W   | 0.62 | 1.65                        | 1.65  | 2.27  | 2.27  |  |  |  |
| 2017-08-09             | 2017-08-17             |                     |                 |      |                             |       |       |       |  |  |  |
| 21:30:00               | 23:59:00               | 352114.0000N        | 1163330.0000W   | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41  |  |  |  |
| 2017-08-10             | 2017-08-10             |                     |                 |      |                             |       |       |       |  |  |  |
| 18:00:00               | 19:30:00               | 645447.0000N        | 1464448.0000W   | 0.00 | 0.00                        | 0.00  | 0.00  | 0.00  |  |  |  |
| 2017-08-11             | 2017-08-11             |                     |                 |      |                             |       |       |       |  |  |  |
| 16:30:00               | 18:30:00               | 352114.0000N        | 1163330.0000W   | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41  |  |  |  |
| 2017-08-11             | 2017-08-11             |                     |                 |      |                             |       |       |       |  |  |  |
| 18:30:00               | 22:30:00               | 331424.0000N        | 1062174.0000W   | 3.20 | 4.23                        | 4.64  | 8.67  | 10.53 |  |  |  |
| 2017-08-11             | 2017-08-13             |                     |                 |      |                             |       |       |       |  |  |  |
| 18:30:00               | 22:30:00               | 352114.0000N        | 1163330.0000W   | 2.37 | 2.37                        | 3.72  | 6.60  | 8.36  |  |  |  |
| 2017-08-12             | 2017-08-13             |                     |                 |      |                             |       |       |       |  |  |  |
| 18:30:00               | 22:30:00               | 352114.0000N        | 1163330.0000W   | 2.37 | 2.37                        | 3.72  | 6.60  | 8.36  |  |  |  |
| 2017-08-13             | 2017-08-13             |                     |                 |      |                             |       |       |       |  |  |  |
| 16:30:00               | 23:59:00               | 352114.0000N        | 1163330.0000W   | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41  |  |  |  |
| 2017-08-13             | 2017-08-13             |                     |                 |      |                             |       |       |       |  |  |  |
| 18:30:00               | 22:30:00               | 352114.0000N        | 1163330.0000W   | 2.37 | 2.37                        | 3.72  | 6.60  | 8.36  |  |  |  |
| 2017-08-14             | 2017-08-21             | 25022 < 00003       | 4454654 0000    | 1.24 | 1.04                        | 2.15  | 4.40  |       |  |  |  |
| 08:00:00               | 13:00:00               | 350236.0000N        | 1174651.0000W   | 1.34 | 1.96                        | 2.17  | 4.13  | 6.19  |  |  |  |
| 2017-08-16             | 2017-08-17             | 252114 00000        | 11.62220 000011 | 2.27 | 2.27                        | 2.72  |       | 0.26  |  |  |  |
| 18:30:00               | 22:30:00               | 352114.0000N        | 1163330.0000W   | 2.37 | 2.37                        | 3.72  | 6.60  | 8.36  |  |  |  |
| 2017-08-01             | 2017-08-01             | 225 412 0000NI      | 1125600 000000  | 1 44 | 2.40                        | 2.50  | 4 4 4 | 671   |  |  |  |
| 18:30:00               | 22:30:00               | 325413.0000N        | 1135609.0000W   | 1.44 | 2.48                        | 2.58  | 4.44  | 6.71  |  |  |  |
| 2017-08-03             | 2017-08-04             | 221424 0000N        | 1062147 00000   | 1 22 | 6.01                        | C 01  | 0.20  | 11.76 |  |  |  |
| 04:30:00               | 12:00:00               | 331424.0000N        | 1062147.0000W   | 4.33 | 6.81                        | 6.81  | 9.29  | 11.76 |  |  |  |
| 2017-08-03<br>18:30:00 | 2017-08-04<br>22:30:00 | 325413.0000N        | 1135609.0000W   | 1.44 | 2.48                        | 2.58  | 4.44  | 6.71  |  |  |  |
| 2017-08-05             | 2017-08-06             | 323413.0000IN       | 1133003.0000W   | 1.44 | 2.40                        | 2.30  | 4.44  | 0./1  |  |  |  |
| 07:00:00               | 13:00:00               | 320000.0000N        | 1184500.0000W   | 2.37 | 3.82                        | 4.23  | 6.30  | 8.36  |  |  |  |
| 2017-08-07             | 2017-08-07             | 320000.00001N       | 1104200.0000W   | 2.31 | 3.02                        | 7.23  | 0.50  | 0.50  |  |  |  |
| 18:30:00               | 22:30:00               | 331424.0000N        | 1062147.0000W   | 3.20 | 4.23                        | 4.64  | 8.67  | 10.53 |  |  |  |
| 2017-08-08             | 2017-08-11             | 331727.0000IN       | 1002177.0000 W  | 3.20 | 7.23                        | 7.04  | 0.07  | 10.33 |  |  |  |
| 00:10:00               | 03:00:00               | 645447.0000N        | 1464448.0000W   | 0.00 | 0.00                        | 0.00  | 0.00  | 0.00  |  |  |  |
| 00.10.00               | 05.00.00               | J-J7.00001 <b>\</b> | 1 TOTTTO.0000 W | 0.00 | 0.00                        | 0.00  | 0.00  | 0.00  |  |  |  |

|                        |                        |                |                  |      | Percent Impact at Each Site |       |       |        |  |  |  |
|------------------------|------------------------|----------------|------------------|------|-----------------------------|-------|-------|--------|--|--|--|
| START DATE             | END DATE               | LAT            | LONG             | 50   | 4000                        | 10000 | FL250 | FL400  |  |  |  |
| 2017-08-17             | 2017-08-17             | LAI            | LONG             | 30   | 7000                        | 10000 | FL250 | TL-100 |  |  |  |
| 16:30:00               | 23:59:00               | 352114.0000N   | 1163330.0000W    | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41   |  |  |  |
| 2017-08-19             | 2017-08-20             | 332111.000011  | 1103330.0000 11  | 0.11 | 0.21                        | 0.31  | 0.11  | 0.11   |  |  |  |
| 16:30:00               | 23:59:00               | 352114.0000N   | 1163330.0000W    | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41   |  |  |  |
| 2017-08-19             | 2017-08-20             |                |                  |      |                             |       |       | *****  |  |  |  |
| 18:30:00               | 22:30:00               | 352114.0000N   | 1163330.0000W    | 2.37 | 2.37                        | 3.72  | 6.60  | 8.36   |  |  |  |
| 2017-08-22             | 2017-08-22             |                |                  |      |                             |       |       |        |  |  |  |
| 07:00:00               | 13:00:00               | 320000.0000N   | 1184500.0000W    | 2.37 | 3.82                        | 4.23  | 6.30  | 8.36   |  |  |  |
| 2017-08-23             | 2017-08-23             |                |                  |      |                             |       |       |        |  |  |  |
| 07:00:00               | 13:00:00               | 320000.0000N   | 1184500.0000W    | 2.37 | 3.82                        | 4.23  | 6.30  | 8.36   |  |  |  |
| 2017-08-24             | 2017-08-27             |                |                  |      |                             |       |       |        |  |  |  |
| 08:00:00               | 13:00:00               | 350236.0000N   | 1174651.0000W    | 1.34 | 1.96                        | 2.17  | 4.13  | 6.19   |  |  |  |
| 2017-08-24             | 2017-08-25             |                |                  |      |                             |       |       |        |  |  |  |
| 13:00:00               | 18:00:00               | 390335.0000N   | 853248.0000W     | 0.00 | 0.21                        | 0.21  | 0.21  | 0.21   |  |  |  |
| 2017-08-28             | 2017-08-29             |                |                  |      |                             |       |       |        |  |  |  |
| 13:00:00               | 18:00:00               | 390335.0000N   | 853248.0000W     | 0.00 | 0.21                        | 0.21  | 0.21  | 0.21   |  |  |  |
| 2017-09-06             | 2017-09-06             | 0.50446.00000  | 44 5000 5 0000   |      | 0.51                        | 0.51  | 0.41  | 0.41   |  |  |  |
| 21:30:00               | 23:59:00               | 352112.0000N   | 1163325.0000W    | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41   |  |  |  |
| 2017-09-07             | 2017-09-08             | 42.4220.000034 | 44.505.44.0000   | 0.44 | 0.21                        | 0.21  | 0.21  | 0.44   |  |  |  |
| 02:00:00               | 14:30:00               | 424328.0000N   | 1153544.0000W    | 0.41 | 0.21                        | 0.21  | 0.31  | 0.41   |  |  |  |
| 2017-09-07             | 2017-09-07             | 225220 00001   | 10.00.45.0000000 | 1 44 | 2.20                        | 2.20  | 6.60  | 0.20   |  |  |  |
| 18:30:00               | 22:30:00               | 325330.0000N   | 1060456.0000W    | 1.44 | 3.30                        | 3.30  | 6.60  | 9.29   |  |  |  |
| 2017-09-08             | 2017-09-08             | 202251 0000N   | 9.62004 0000W    | 2 10 | 4.02                        | 5 17  | 7.64  | 0.60   |  |  |  |
| 13:00:00<br>2017-09-08 | 18:59:00<br>2017-09-08 | 303251.0000N   | 863904.0000W     | 3.10 | 4.02                        | 5.47  | 7.64  | 9.60   |  |  |  |
| 17:30:00               | 18:30:00               | 352112.0000N   | 1163325.0000W    | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41   |  |  |  |
| 2017-09-08             | 2017-09-08             | 332112.0000IN  | 1103323.0000W    | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41   |  |  |  |
| 18:30:00               | 22:30:00               | 352112.0000N   | 1163325.0000W    | 1.65 | 2.06                        | 3.92  | 6.40  | 8.46   |  |  |  |
| 2017-09-09             | 2017-09-11             | 332112.000014  | 1103323.0000 **  | 1.03 | 2.00                        | 3.72  | 0.40  | 0.40   |  |  |  |
| 00:01:00               | 23:59:00               | 311546.0000N   | 974609.0000W     | 0.10 | 0.93                        | 2.06  | 4.44  | 6.40   |  |  |  |
| 2017-09-09             | 2017-09-09             | 3113 10.00001  | 37 1003.0000 TT  | 0.10 | 0.75                        | 2.00  |       | 0.10   |  |  |  |
| 02:00:00               | 14:30:00               | 424328.0000N   | 1153544.0000W    | 0.41 | 0.21                        | 0.21  | 0.31  | 0.41   |  |  |  |
| 2017-09-09             | 2017-09-10             | .2.020,00001   | 11000            | 01   | 0.21                        | 0.21  | 0.01  | 01.11  |  |  |  |
| 06:00:00               | 22:30:00               | 352112.0000N   | 1163325.0000W    | 1.65 | 2.06                        | 3.92  | 6.40  | 8.46   |  |  |  |
| 2017-09-09             | 2017-09-09             |                |                  |      |                             |       |       |        |  |  |  |
| 18:30:00               | 20:00:00               | 325330.0000N   | 1060456.0000W    | 1.44 | 3.30                        | 3.30  | 6.60  | 9.29   |  |  |  |
| 2017-09-10             | 2017-09-10             |                |                  |      |                             |       |       |        |  |  |  |
| 02:00:00               | 14:30:00               | 424328.0000N   | 1153544.0000W    | 0.41 | 0.21                        | 0.21  | 0.31  | 0.41   |  |  |  |
| 2017-09-10             | 2017-09-10             |                |                  |      |                             |       |       |        |  |  |  |
| 18:30:00               | 20:00:00               | 325330.0000N   | 1060456.0000W    | 1.44 | 3.30                        | 3.30  | 6.60  | 9.29   |  |  |  |
| 2017-08-17             | 2017-08-17             |                |                  |      |                             |       |       |        |  |  |  |
| 16:30:00               | 23:59:00               | 352114.0000N   | 1163330.0000W    | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41   |  |  |  |
| 2017-08-19             | 2017-08-20             |                |                  |      |                             |       |       |        |  |  |  |
| 16:30:00               | 23:59:00               | 352114.0000N   | 1163330.0000W    | 0.41 | 0.21                        | 0.31  | 0.41  | 0.41   |  |  |  |
| 2017-08-19             | 2017-08-20             |                |                  |      |                             |       |       |        |  |  |  |
| 18:30:00               | 22:30:00               | 352114.0000N   | 1163330.0000W    | 2.37 | 2.37                        | 3.72  | 6.60  | 8.36   |  |  |  |
| 2017-08-22             | 2017-08-22             | 2200000000     | 4404500 0        |      | 2.05                        |       |       | 0.5    |  |  |  |
| 07:00:00               | 13:00:00               | 320000.0000N   | 1184500.0000W    | 2.37 | 3.82                        | 4.23  | 6.30  | 8.36   |  |  |  |
| 2017-08-23             | 2017-08-23             | 220000 0000    | 1104500 0000     | 2.55 | 2.62                        | 4.22  | 6.00  | 0.25   |  |  |  |
| 07:00:00               | 13:00:00               | 320000.0000N   | 1184500.0000W    | 2.37 | 3.82                        | 4.23  | 6.30  | 8.36   |  |  |  |
| 2017-08-24             | 2017-08-27             | 250226 000031  | 1174651 0000     | 1 24 | 1.00                        | 2.17  | 4.12  | 6.10   |  |  |  |
| 08:00:00               | 13:00:00               | 350236.0000N   | 1174651.0000W    | 1.34 | 1.96                        | 2.17  | 4.13  | 6.19   |  |  |  |

|            |            |              |               | Percent Impact at Each Site |      |       |       | ite   |
|------------|------------|--------------|---------------|-----------------------------|------|-------|-------|-------|
| START DATE | END DATE   | LAT          | LONG          | 50                          | 4000 | 10000 | FL250 | FL400 |
| 2017-09-11 | 2017-09-11 |              |               |                             |      |       |       |       |
| 02:00:00   | 14:30:00   | 424328.0000N | 1153544.0000W | 0.41                        | 0.21 | 0.21  | 0.31  | 0.41  |
| 2017-09-11 | 2017-09-11 |              |               |                             |      |       |       |       |
| 06:00:00   | 20:59:00   | 352112.0000N | 1163325.0000W | 1.65                        | 2.06 | 3.92  | 6.40  | 8.46  |
| 2017-09-11 | 2017-09-12 |              |               |                             |      |       |       |       |
| 07:00:00   | 11:30:00   | 325330.0000N | 1060456.0000W | 1.44                        | 3.30 | 3.30  | 6.60  | 9.29  |
| 2017-09-11 | 2017-09-15 |              |               |                             |      |       |       |       |
| 13:00:00   | 18:59:00   | 303251.0000N | 863904.0000W  | 3.10                        | 4.02 | 5.47  | 7.64  | 9.60  |
| 2017-09-12 | 2017-09-12 |              |               |                             |      |       |       |       |
| 00:01:00   | 05:00:00   | 311546.0000N | 974609.0000W  | 0.10                        | 0.93 | 2.06  | 4.44  | 6.40  |
| 2017-09-12 | 2017-09-22 |              |               |                             |      |       |       |       |
| 02:00:00   | 14:30:00   | 424328.0000N | 1153544.0000W | 0.41                        | 0.21 | 0.21  | 0.31  | 0.41  |
| 2017-09-12 | 2017-09-14 |              |               |                             |      |       |       |       |
| 06:00:00   | 22:30:00   | 352112.0000N | 1163325.0000W | 1.65                        | 2.06 | 3.92  | 6.40  | 8.46  |
| 2017-09-12 | 2017-09-14 |              |               |                             |      |       |       |       |
| 16:30:00   | 23:59:00   | 352112.0000N | 1163325.0000W | 0.41                        | 0.21 | 0.31  | 0.41  | 0.41  |
| 2017-09-12 | 2017-09-12 |              |               |                             |      |       |       |       |
| 18:30:00   | 20:00:00   | 325330.0000N | 1060456.0000W | 1.44                        | 3.30 | 3.30  | 6.60  | 9.29  |
| 2017-09-13 | 2017-09-13 |              |               |                             |      |       |       |       |
| 08:00:00   | 11:30:00   | 325330.0000N | 1060456.0000W | 1.44                        | 3.30 | 3.30  | 6.60  | 9.29  |
| 2017-09-14 | 2017-09-14 |              |               |                             |      |       |       |       |
| 18:30:00   | 20:00:00   | 325330.0000N | 1060456.0000W | 1.44                        | 3.30 | 3.30  | 6.60  | 9.29  |
| 2017-09-14 | 2017-09-14 |              |               |                             |      |       |       |       |
| 18:30:00   | 22:30:00   | 352112.0000N | 1163325.0000W | 1.65                        | 2.06 | 3.92  | 6.40  | 8.46  |
| 2017-09-15 | 2017-09-17 |              |               |                             |      |       |       |       |
| 06:00:00   | 22:30:00   | 352112.0000N | 1163325.0000W | 1.65                        | 2.06 | 3.92  | 6.40  | 8.46  |
| 2017-09-15 | 2017-09-17 |              |               |                             |      |       |       |       |
| 16:30:00   | 23:59:00   | 352112.0000N | 1163325.0000W | 0.41                        | 0.21 | 0.31  | 0.41  | 0.41  |
| 2017-09-16 | 2017-09-19 |              |               |                             |      |       |       |       |
| 07:00:00   | 11:30:00   | 325330.0000N | 1060456.0000W | 1.44                        | 3.30 | 3.30  | 6.60  | 9.29  |
| 2017-09-16 | 2017-09-23 |              |               |                             |      |       |       |       |
| 11:00:00   | 13:00:00   | 350432.0000N | 755844.0000W  | 0.41                        | 1.14 | 1.75  | 2.89  | 4.33  |
| 2017-09-18 | 2017-09-18 |              |               |                             |      |       |       |       |
| 06:00:00   | 13:00:00   | 352112.0000N | 1163325.0000W | 1.65                        | 2.06 | 3.92  | 6.40  | 8.46  |
| 2017-09-18 | 2017-09-18 |              |               |                             |      |       |       |       |
| 16:30:00   | 18:00:00   | 393835.0000N | 1174702.0000W | 5.88                        | 9.91 | 8.67  | 14.04 | 16.20 |
| 2017-09-19 | 2017-09-20 |              |               |                             |      |       |       |       |
| 19:00:00   | 23:59:00   | 393835.0000N | 1174702.0000W | 5.88                        | 9.91 | 8.67  | 14.04 | 16.20 |
| 2017-09-21 | 2017-09-21 |              |               |                             |      |       |       |       |
| 16:30:00   | 23:59:00   | 393835.0000N | 1174702.0000W | 5.88                        | 9.91 | 8.67  | 14.04 | 16.20 |
| 2017-09-22 | 2017-09-24 |              |               |                             |      |       |       |       |
| 05:30:00   | 12:00:00   | 383229.0000N | 1045209.0000W | 1.03                        | 1.96 | 2.27  | 5.88  | 7.33  |
| 2017-09-25 | 2017-09-29 |              |               |                             |      |       |       |       |
| 11:00:00   | 13:00:00   | 350432.0000N | 755844.0000W  | 0.41                        | 1.14 | 1.75  | 2.89  | 4.33  |
| 2017-09-26 | 2017-09-28 |              |               |                             |      |       |       |       |
| 16:30:00   | 22:30:00   | 355629.0000N | 1173902.0000W | 2.68                        | 3.61 | 5.26  | 8.67  | 9.91  |

# 10 Appendices

## **10.1 Appendix A: Performance Summary**

**Table 10-1 Performance Summary** 

| User Range Error Accuracy                                                                                                        | Conditions and Constraints                                                                                                                                                                                                                             | Measured<br>Performance    |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Single Frequency C/A-Code  • ≤ 7.8m 95% Global Average URE during normal operations over All AODs                                | <ul> <li>For any healthy SPS SIS</li> <li>Neglecting single-frequency ionospheric delay model errors</li> <li>Including group delay time correction (T<sub>GD</sub>)</li> </ul>                                                                        | ≤ 2.576 m                  |
| • ≤ 6.0m 95% Global Average URE during operations at Zero AOD • ≤ 12.8m 95% Global Average                                       | errors at L1  • Including inter-signal bias (P(Y)-code to C/A-code) errors at L1                                                                                                                                                                       | N/A                        |
| URE during normal operations at Any AOD                                                                                          | ŕ                                                                                                                                                                                                                                                      | N/A                        |
| Single Frequency C/A-Code                                                                                                        | <ul><li>For any healthy SPS SIS.</li><li>Neglecting single-frequency ionospheric</li></ul>                                                                                                                                                             |                            |
| • ≤ 30m 99.94% Global Average URE during normal operations                                                                       | delay model errors  • Including group delay time correction (T <sub>GD</sub> ) errors at L1                                                                                                                                                            | 100% Global                |
| • ≤ 30m 99.79% Worst Case single point average during normal operations.                                                         | <ul> <li>Including inter-signal bias (P(Y)-code to C/A-code) errors at L1</li> <li>Standard based on measurement interval of one year; average of daily values within service volume</li> </ul>                                                        | 100% WCP                   |
|                                                                                                                                  | • Standard based on 3 service failures per year, lasting no more than 6 hours each                                                                                                                                                                     |                            |
| User Range Rate<br>Error Accuracy                                                                                                | Conditions and Constraints                                                                                                                                                                                                                             |                            |
| Single-Frequency C/A-Code:  • ≤ 6 mm/sec 95% Global Average                                                                      | <ul> <li>For any healthy SPS SIS</li> <li>Neglecting all perceived pseudorange rate errors attributable to pseudorange step changes</li> </ul>                                                                                                         | ≤ 2.760 mm/sec             |
| URRE over any 3-second interval during normal operations at Any AOD                                                              | <ul> <li>caused by NAV message data cutovers</li> <li>Neglecting single-frequency ionospheric delay model errors</li> </ul>                                                                                                                            |                            |
| User Range Acceleration Error Accuracy                                                                                           | Conditions and Constraints                                                                                                                                                                                                                             |                            |
| Single-Frequency C/A-Code:  • ≤ 2 mm/sec² 95% Global average URAE over any 3-second interval during normal operations at Any AOD | <ul> <li>For any healthy SPS SIS</li> <li>Neglecting all perceived pseudorange rate errors attributable to pseudorange step changes caused by NAV message data cutovers</li> <li>Neglecting single-frequency ionospheric delay model errors</li> </ul> | ≤ 22.074 mm/s <sup>2</sup> |

| Per-Satellite Coverage                                                                                                                                                  | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                   | Measured<br>Performance           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Terrestrial Service Volume:  • 100% Coverage                                                                                                                            | For any health or marginal SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                           | 100%                              |
| Constellation Coverage                                                                                                                                                  | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| Terrestrial Service Volume:  • 100% Coverage                                                                                                                            | For any health or marginal SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                           | 100%                              |
| Status and Problem Reporting                                                                                                                                            | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| Scheduled event affecting service • Appropriate NANU issued to the Coast Guard and the FAA at least 48 hours prior to the event                                         | For any SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≥ 125.967 hours<br>Prior to event |
| Unscheduled outage or problem affecting service  • Appropriate NANU issued to the Coast Guard and the FAA as soon as possible after the event                           | • For any SPS SIS                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≤ 0.883 hours                     |
| Unscheduled Failure Interruption Continuity  • ≥ 0.9998 Probability over any hour of not losing the SPS SIS availability from a slot due to unscheduled interruption.   | <ul> <li>Calculated as an average over all slots in the 24-slot constellation, normalized annually</li> <li>Given that the SPS SIS is available from the slot at the start of the hour.</li> </ul>                                                                                                                                                                                                                                                           | 100%                              |
| Operational Satellite Count                                                                                                                                             | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| • ≥ 0.95 Probability that the constellation will have at least 24 operational satellites regardless of whether those operational satellites are located in slots or not | • Applies to the total number of operational satellites in the constellation (averaged over any day); where any satellite which appears in the transmitted navigation message almanac is defined to be an operation satellite regardless of whether that satellite is currently broadcasting a healthy SPS SIS or not and regardless of whether the broadcast SPS SIS also satisfies the other performance standards in the SPS performance standard or not. | 100%                              |
| PDOP Availability                                                                                                                                                       | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
| <ul> <li>≥ 98% global PDOP of 6 or less</li> <li>≥ 88% worst site PDOP of 6 or</li> </ul>                                                                               | • Defined for a position/time solution meeting<br>the representative user conditions and operating<br>within the service volume over any 24-hour                                                                                                                                                                                                                                                                                                             | 100 %<br>100 %                    |
| less                                                                                                                                                                    | interval                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 /0                            |
| Service Availability                                                                                                                                                    | Conditions and Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |
|                                                                                                                                                                         | <ul> <li>17m Horizontal (SIS only) 95% threshold</li> <li>37m Vertical (SIS only) 95% threshold</li> <li>Defined for a position/time solution meeting</li> </ul>                                                                                                                                                                                                                                                                                             | 100% Horizontal                   |
| • ≥ 99% Vertical Service<br>Availability, average location                                                                                                              | the representative user conditions and operating within the service volume over any 24-hour interval.                                                                                                                                                                                                                                                                                                                                                        | 100% Vertical                     |
| • ≥ 90% Horizontal Service<br>Availability, worst-case location                                                                                                         | <ul> <li>17m Horizontal (SIS only) 95% threshold</li> <li>37m Vertical (SIS only) 95% threshold</li> <li>Defined for a position/time solution meeting</li> </ul>                                                                                                                                                                                                                                                                                             | 100% Horizontal                   |
| • ≥ 90% Vertical Service<br>Availability, worst-case location                                                                                                           | the representative user conditions and operating within the service volume over any 24-hour interval.                                                                                                                                                                                                                                                                                                                                                        | 100% Vertical                     |

| Position/Time Accuracy                     | Conditions and Constraints                                                                  |                      |
|--------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|
| Global Average Position Domain             | Defined for a position/time solution meeting the                                            |                      |
| Accuracy                                   | representative user conditions                                                              | ≤ 1.799 m Horizontal |
| recuracy                                   | • Standard based on a measurement interval of 24                                            |                      |
| • ≤ 9m 95% Horizontal Error                | hours averaged over all points in the service                                               | ≤ 3.826 m Vertical   |
| • ≤ 15m 95% Vertical Error                 | volume.                                                                                     | ≥ 5.820 III Vertical |
| Worst Site Position Domain                 |                                                                                             |                      |
|                                            | • Defined for a position/time solution meeting the                                          | < 2.024 ··· H. ···   |
| Accuracy                                   | representative user conditions • Standard based on a measurement interval of 24             | ≤ 3.234 m Horiz.     |
| 217 050/ Harimatal Famor                   | hours averaged over all points in the service                                               | 4 7 10 X             |
| • ≤ 17m 95% Horizontal Error               |                                                                                             | ≤ 4.719 m Vert.      |
| • ≤ 37m 95% Vertical Error                 | volume.                                                                                     |                      |
| Time Transfer Domain Accuracy              | • Defined for a time transfer solution meeting the                                          |                      |
|                                            | representative user conditions                                                              |                      |
| • ≤ 40 nanoseconds time transfer           | • Standard based on a measurement interval of 24                                            | ≤ 10.1 nanoseconds   |
| error 95% of time                          | hours averaged over all points in the service                                               |                      |
| (SIS only)                                 | volume.                                                                                     |                      |
| Instantaneous UTCOE Integrity              | For any healthy SPS SIS                                                                     |                      |
| • NTE ±120 nanoseconds 99.999%             | Worst case for delayed alert is 6 hours                                                     | ≤ 28.4 nanoseconds   |
| of time without a timely alert             |                                                                                             |                      |
| (SIS only)                                 |                                                                                             |                      |
|                                            |                                                                                             |                      |
| Per-Slot Availability                      | Conditions and Constraints                                                                  |                      |
| • $\geq$ 0.957 Probability that a slot in  |                                                                                             |                      |
| the baseline 24-slot configuration         | Calculated as an average over all slots in the                                              | 100%                 |
| will be occupied by a satellite            | 24-slot constellation, normalized annually                                                  |                      |
| broadcasting a healthy SPS SIS             |                                                                                             |                      |
|                                            | Applies to satellites broadcasting a healthy SPS                                            |                      |
| • $\geq$ 0.957 Probability that a slot in  | SIS that also satisfy the other performance                                                 | 100%                 |
| the expanded configuration will be         | standards in the SPS performance standard.                                                  |                      |
| occupied by a pair of satellites each      |                                                                                             |                      |
| broadcasting a healthy SPS SIS             |                                                                                             |                      |
| Constalled on Assallables                  | Completions and Complete                                                                    |                      |
| Constellation Availability                 | Conditions and Constraints                                                                  |                      |
| • $\geq 0.98$ Probability that at least 21 | • Coloulated as an average even all slate in the                                            |                      |
| slots out of the 24 will be occupied       | Calculated as an average over all slots in the  24 slot constellation, normalized appually. | 100%                 |
| either by a satellite broadcasting a       | 24-slot constellation, normalized annually.                                                 | 100%                 |
| healthy SPS SIS in the baseline 24-        | Applies to satellites broadcasting a healthy SPS                                            |                      |
| slot configuration or by a pair of         | SIS that also satisfies the other performance                                               |                      |
| satellites each broadcasting a             | standards in the SPS performance standard.                                                  |                      |
| healthy SPS SIS in the expanded            | standards in the SFS performance standard.                                                  |                      |
| slot configuration                         |                                                                                             |                      |
| • $\geq 0.99999$ Probability that at least |                                                                                             | 100%                 |
| 20 slots out of the 24 will be             |                                                                                             | 100%                 |
| occupied either by a satellite             |                                                                                             |                      |
| broadcasting a healthy SPS SIS in          |                                                                                             |                      |
| the baseline 24-slot configuration or      |                                                                                             |                      |
| by a pair of satellites each               |                                                                                             |                      |
| broadcasting a healthy SPS SIS in          |                                                                                             |                      |
| the expanded slot configuration            |                                                                                             |                      |
| İ                                          |                                                                                             | I                    |

## 10.2 Appendix B: Geomagnetic Data

Prepared by the U.S. Dept. of Commerce, NOAA, Space Weather Prediction Center

Current Quarter Daily Geomagnetic Data

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Middle Latitude<br>- Fredericksburg -                                                                                                                                                    | High Latitude<br>College                                                                                                                                                                                             | Estimated Planetary |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Date 2017 07 01 2017 07 02 2017 07 03 2017 07 04 2017 07 05 2017 07 06 2017 07 07 2017 07 08 2017 07 08 2017 07 10 2017 07 11 2017 07 12 2017 07 13 2017 07 14 2017 07 15 2017 07 16 2017 07 17 2017 07 18 2017 07 18 2017 07 18 2017 07 18 2017 07 18 2017 07 19 2017 07 20 2017 07 21 2017 07 22 2017 07 23 2017 07 24 2017 07 25 2017 07 25 2017 07 26 2017 07 27 2017 07 28 2017 07 28 2017 07 28 2017 07 28 2017 07 29 2017 07 29 2017 07 30 2017 07 31 2017 08 01 2017 08 01 2017 08 02 2017 08 08 2017 08 08 2017 08 09 2017 08 09 2017 08 09 2017 08 09 2017 08 09 2017 08 09 | A                                                                                                                                                                                        | A                                                                                                                                                                                                                    | A K-indices  11     |
| 2017 08 11<br>2017 08 12<br>2017 08 13<br>2017 08 14<br>2017 08 15<br>2017 08 16<br>2017 08 17<br>2017 08 18<br>2017 08 19<br>2017 08 20                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 1 2 2 1 2 2 3 2 12 3 3 2 2 3 1 3 3 9 2 3 2 2 2 3 2 1 5 2 1 0 2 2 1 1 2 3 1 1 0 1 2 1 1 1 5 2 1 1 2 2 1 1 2 20 2 2 5 4 4 3 3 3 20 5 3 2 3 4 3 4 2 23 4 4 4 3 3 4 3 4 21 4 5 3 4 3 3 2 3 | 5 1 2 1 2 1 2 2 1<br>9 3 3 3 3 1 2 1 2 2<br>7 2 2 3 2 2 1 1 1<br>4 2 1 0 1 2 0 1 2<br>2 1 1 0 0 0 0 1 1<br>5 1 1 2 1 2 1 1 2<br>59 3 2 6 7 7 5 4 3<br>40 3 3 4 5 6 5 6 2<br>57 5 4 7 6 6 5 3 3<br>32 4 5 6 5 4 3 2 2 | 7                   |

| 0017 00 01 | 13 | 2 2     |     | , ,        | . 1 | ^ | 2 | 1.0 | 2 0 |     | 4 | 2 | 1 / | 2 2 | 11 | 2 | ^ | 2   | 2 2 | 1 | ^ | 2 |
|------------|----|---------|-----|------------|-----|---|---|-----|-----|-----|---|---|-----|-----|----|---|---|-----|-----|---|---|---|
| 2017 08 21 |    |         |     | 4 3        |     |   |   | 16  | 3 2 |     |   |   | 1 2 |     | 11 |   |   |     | 3 2 |   |   |   |
| 2017 08 22 | 16 | 5 4     |     | 2 3        |     |   |   | 37  | 6 5 |     | 5 | 5 |     | 1 2 | 23 | 6 |   | 3 2 |     |   |   | 3 |
| 2017 08 23 | 17 | 3 4     |     | 3 4        |     |   | 2 | 72  | 3 4 | -   | - | 7 |     | 5 2 | 25 |   |   |     | 3 5 |   | - | 3 |
| 2017 08 24 | 16 | 4 4     |     | 3 3        |     | 1 |   | 38  | 2 5 |     | 6 | 6 |     | 0 0 | 11 |   |   | 3   |     |   | _ | 1 |
| 2017 08 25 | 7  | 1 2     |     | 2 3        |     |   | 1 | 6   | 1 1 |     | 3 | 3 |     | 1 1 | 5  | 1 | 1 |     | 2 2 |   |   | 2 |
| 2017 08 26 | 5  | 1 1     |     | 1 2        |     |   | 1 | 2   | 0 1 |     | 0 | 1 |     | 1 0 | 5  | 1 |   |     | 1 1 |   |   | 1 |
| 2017 08 27 | 6  | 2 1     | . 0 | 2 2        | 2   | 2 | 2 | 14  | 2 1 | . 0 | 4 | 2 | 5 3 | 3 2 | 10 | 3 | 1 | 1 : | 3 2 | 3 | 3 | 3 |
| 2017 08 28 | 3  | 1 1     | . 0 | 2 1        | . 1 | 1 | 0 | 6   | 2 1 | . 1 | 3 | 3 | 1 ( | 0 0 | 4  | 1 | 1 | 1 : | 1 1 | 1 | 0 | 1 |
| 2017 08 29 | 10 | 1 2     | 2   | 1 2        | 2   | 4 | 3 | 6   | 1 1 | . 2 | 0 | 3 | 1 3 | 3 1 | 10 | 1 | 2 | 2 : | 1 1 | 2 | 4 | 3 |
| 2017 08 30 | 5  | 2 2     | 2   | 2 2        | 0   | 1 | 0 | 4   | 1 1 | . 3 | 2 | 1 | 0 ( | 0 C | 5  | 2 | 2 | 2   | 1 1 | 0 | 0 | 0 |
| 2017 08 31 | 20 | 2 3     | 4   | 5 4        | . 3 | 3 | 2 | 42  | 2 2 | 5   | 6 | 6 | 6 3 | 3 3 | 31 | 2 | 3 | 5 ! | 5 5 | 4 | 4 | 3 |
| 2017 09 01 | 17 | 4 3     | 2   | 4 4        | 2   | 2 | 3 | 29  | 3 3 | 3   | 6 | 6 | 3 2 | 2 2 | 19 | 4 | 3 | 2 4 | 4 4 | 2 | 2 | 4 |
| 2017 09 02 | 25 | 4 5     | 5   | 3 3        | 3   | 3 | 3 | 32  | 4 5 | 5   | 6 | 3 | 4 2 | 2 2 | 26 | 4 | 5 | 5 3 | 3 2 | 3 | 3 | 3 |
| 2017 09 03 | 10 | 3 3     | 1   | 2 3        | 2   | 2 | 2 | 17  | 3 2 | 1   | 5 | 4 | 4   | 1 1 | 9  | 3 | 3 | 1 : | 2 3 | 2 | 2 | 2 |
| 2017 09 04 | 16 | 4 3     |     | 2 2        |     | 4 | 4 | 16  | 2 1 |     | 5 | 4 |     | 2 3 | 18 |   |   |     | 2 2 | 2 | 4 | 5 |
| 2017 09 05 | 11 | 3 3     |     | 2 2        |     | 2 |   | 14  | 3 3 |     | 4 | 4 |     | 1 1 | 12 |   |   |     | 2 2 | 3 | - | 2 |
| 2017 09 06 | 18 | 2 2     |     | 4 5        |     |   | 4 | 9   | 1 1 |     | 4 | 2 |     | 3   | 11 | 2 |   |     | 33  | 2 |   | 4 |
| 2017 09 07 | 23 | 2 3     |     | 3 4        |     | 2 | 6 | 60  | 3 5 |     | 7 | 4 |     | 36  | 38 | 3 | 4 |     | 43  | 2 | - | 8 |
| 2017 09 07 | 50 | 6 4     |     | 4 7        |     | 4 | 4 | 110 | 6 6 |     | 5 | 9 |     | 64  | 96 | 8 |   |     | ± 3 | 7 |   | 5 |
| 2017 09 08 | 6  | 3 2     |     | 1 1        |     | - | 1 | 3   | 3 1 |     |   |   | ,   | 0 0 | 6  | 3 |   |     | 11  | 1 | - | 1 |
| 2017 09 09 | 12 |         |     | 1 2        |     | 3 | 3 |     |     |     | 0 | 0 |     |     | 7  | 1 |   |     | 11  |   | _ | 4 |
|            |    | 1 1 3 2 |     |            |     |   |   | 3   |     |     |   |   |     |     |    | 3 |   |     | 23  |   |   | - |
| 2017 09 11 | 8  |         |     |            |     | _ | 2 | 19  |     | _   | 4 | 4 | -   |     | 11 |   |   |     |     |   | - | 3 |
| 2017 09 12 | 16 | 3 2     |     | 3 2        |     | 3 | 5 | 25  | 4 2 |     | 5 | 5 |     | 3 3 | 18 | 3 |   |     | 2 3 | 2 | - | 5 |
| 2017 09 13 | 13 | 5 3     |     | 2 2        |     | 1 | 1 | 30  | 4 4 |     | 4 | 3 |     | 0 0 | 15 | 5 | - |     | 2 2 | 2 | _ | 0 |
| 2017 09 14 | 19 | 2 2     |     | 2 3        |     | 5 | 3 | 38  | 2 1 |     | 5 | 6 | -   | 4 5 | 25 | 2 |   |     | 2 4 | 6 | - | 4 |
| 2017 09 15 | 30 | 6 4     |     | 3 4        |     | 4 | 4 | 51  | 3 5 |     | 6 | 6 |     | 4 4 | 36 | 6 |   |     | 3 4 | 3 | - | 5 |
| 2017 09 16 | 23 | 5 5     |     | 3 3        |     | 2 | 4 | 52  | 5 6 |     | 6 | 6 |     | 3 3 | 30 | 5 |   |     | 3 4 | 4 | - | 4 |
| 2017 09 17 | 13 | 4 3     | 2   | 2 3        | 3   | 2 | 2 | 39  | 4 3 | 2   | 6 | 6 | 6 3 | 3 2 | 17 | 3 |   |     | 3 4 | 4 | 2 | 2 |
| 2017 09 18 | 21 | 4 4     | 5   | 3 3        |     | 2 | 3 | 51  | 4 3 | 7   | 7 | 5 |     | 2 2 | 22 | 4 |   |     | 4 3 | 3 | 2 | 3 |
| 2017 09 19 | 6  | 2 1     | . 1 | 2 2        | 1   | 2 | 2 | 11  | 1 1 | . 0 | 4 | 3 | 2 2 | 2 4 | 8  | 3 | 2 | 1 : | 2 2 | 2 | 3 | 3 |
| 2017 09 20 | 8  | 3 3     | 2   | 2 2        | 1   | 2 | 1 | 19  | 3 3 | 3   | 5 | 5 | 2 : | 1 0 | 10 | 3 | 3 | 2 2 | 2 2 | 1 | 2 | 1 |
| 2017 09 21 | 7  | 1 2     | 3   | 2 2        | 1   | 1 | 2 | 9   | 1 1 | . 4 | 3 | 4 | 0 ( | 0 C | 7  | 1 | 2 | 3 2 | 2 2 | 0 | 1 | 2 |
| 2017 09 22 | 5  | 1 1     | . 1 | 1 1        | 2   | 2 | 2 | 6   | 1 1 | . 3 | 1 | 2 | 2 2 | 2 1 | 5  | 1 | 1 | 1   | 1 1 | 1 | 2 | 2 |
| 2017 09 23 | 4  | 1 1     | . 1 | 1 1        | . 2 | 2 | 1 | 5   | 1 1 | . 3 | 2 | 2 | 0 3 | 1 1 | 5  | 1 | 2 | 1 : | 1 1 | 1 | 2 | 2 |
| 2017 09 24 | 5  | 1 2     | 2 0 | 1 1        | . 2 | 2 | 2 | 7   | 0 1 |     | 3 | 3 | 3 : | 1 2 | 6  | 1 | 2 | 1 : | 1 1 | 1 | 2 | 3 |
| 2017 09 25 | 5  | 3 2     |     | 1 1        |     |   | 0 | 2   | 3 1 |     | 0 | 0 |     | 0 0 | 5  | 3 |   |     | 10  | 1 |   | 1 |
| 2017 09 26 | 3  | 0 0     |     | 1 1        |     | 1 | 2 | 2   | 0 1 |     | 0 | 0 |     | 2   | 4  | 1 | 1 |     | 1 1 | 0 |   | 2 |
| 2017 09 27 | 24 | 3 2     | _   | 4 3        | _   | 5 | 5 | 47  | 2 1 | _   | 6 | 6 | -   | 4 5 | 37 | 3 | _ |     | 44  | 3 | - | 6 |
| 2017 09 28 | 41 | 5 6     |     | 4 3        |     | 3 | 5 | 72  | 5 6 | -   | 5 | 5 | -   | 3 3 | 55 | 6 |   |     | 54  | 4 | - | 5 |
| 2017 09 20 | 8  |         |     | 2 2        | -   | 1 | 2 | 29  | 3 2 |     | 6 | 6 |     | 12  | 12 | 3 |   |     | 33  | 2 | - | 2 |
| 2017 09 29 | 11 | 2 3     |     | 2 2        |     |   | 3 | 36  | 2 3 |     | 4 | 6 | 6 3 |     | 5  |   |   |     | 23  |   | 2 | _ |
| 2011 09 30 | ТТ | ۷ 3     | , , | <i>L L</i> |     | _ | ی | 20  | _ J | , ) | 4 | O | υ.  | د ر | J  | _ | ی | 4 4 | د ع | 4 | _ | J |

## 10.3 Appendix C: Performance Analysis (PAN) Problem Report

In 1993, the FAA began monitoring and analyzing Global Positioning System (GPS) Standard Positioning Service (SPS) performance data. At present, the FAA has approved GPS for IFR and is developing WAAS as a GPS augmentation system. In order to ensure the safe and effective use of GPS and its augmentation systems within the NAS, it is critical that characteristics of GPS performance as well as specific causes for service outages be monitored and understood. To accomplish this objective, GPS SPS performance data is documented in a quarterly GPS Performance Analysis (PAN) report. The PAN report contains data collected at various National Satellite Test Bed (NSTB) and Wide Area Augmentation System (WAAS) reference station locations. This PAN Problem Report will be issued only when the performance data fails to meet the GPS Standard Positioning Service (SPS) Signal Specification.

#### **Problem Description:**

There were no problems this quarter.

#### 10.4 Appendix D: Glossary

The terms and definitions discussed below are taken from the Standard Positioning Service Performance Specification (September 2008). An understanding of these terms and definitions is a necessary prerequisite to full understanding of the Signal Specification.

#### **General Terms and Definitions**

**Almanac Longitude of the Ascending Node (.o):** Equatorial angle from the Prime Meridian (Greenwich) at the weekly epoch to the ascending node at the ephemeris reference epoch.

Coarse/Acquisition (C/A) Code: A PRN code sequence used to modulate the GPS L1 carrier.

Corrected Longitude of Ascending Node ( $\Omega k$ ) and Geographic Longitude of the Ascending Node (GLAN): Equatorial angle from the Prime Meridian (Greenwich) to the ascending node, both at arbitrary time  $T_k$ .

**Dilution of Precision (DOP):** The magnifying effect on GPS position error induced by mapping GPS ranging errors into position within the specified coordinate system through the geometry of the position solution. The DOP varies as a function of satellite positions relative to user position. The DOP may be represented in any user local coordinate desired. Examples are HDOP for local horizontal, VDOP for local vertical, PDOP for all three coordinates, and TDOP for time.

**Equatorial Angle:** An angle along the equator in the direction of Earth rotation.

Geometric Range: The difference between the estimated locations of a GPS satellite and an SPS receiver.

Ground track Equatorial Crossing (GEC,  $\lambda$ , 2 SOPS GLAN): Equatorial angle from the Prime Meridian (Greenwich) to the location a ground track intersects the equator when crossing from the Southern to the Northern hemisphere. GEC is equal to  $\Omega k$  when the argument of latitude ( $\Phi$ ) is zero.

**Instantaneous User Range Error (URE):** The difference between the pseudo range measured at a given location and the expected pseudo range, as derived from the navigation message and the true user position, neglecting the bias in receiver clock relative to GPS time. A signal-in-space (SIS) URE includes residual orbit, satellite clock, and group delay errors. A system URE (sometimes known as a User Equivalent Range Error, or UERE) contains all line-of-sight error sources, to include SIS, single-frequency ionosphere model error, troposphere model error, multipath and receiver noise.

**Longitude of Ascending Node (LAN):** A general term for the location of the ascending node – the point that an orbit intersects the equator when crossing from the Southern to the Northern hemisphere.

Longitude of the Ground track Equatorial Crossing (GEC,  $\lambda$ , 2 SOPS GLAN): Equatorial angle from the Prime Meridian (Greenwich) to the location a ground track intersects the equator when crossing from the Southern to the Northern hemisphere. GEC is equal to  $\Omega$ k when the argument of latitude ( $\Phi$ ) is zero.

Mean Down Time (MDT): A measure of time required to restore function after any downing event.

Mean Time Between Downing Events (MTBDE): A measure of time between any downing events.

Mean Time Between Failures (MTBF): A measure of time between unscheduled downing events.

**Mean Time to Restore (MTTR):** A measure of time required to restore function after an unscheduled downing event.

**Navigation Message:** Data contained in each satellite's ranging signal and consisting of the ranging signal time-of-transmission, the transmitting satellite's orbital elements, an almanac containing abbreviated orbital element

information to support satellite selection, ranging measurement correction information, and status flags. The message structure is described in Section 2.1.2 of the SPS Performance Standard.

**Operational Satellite:** A GPS satellite which is capable of, but is not necessarily transmitting a usable ranging signal.

**PDOP Availability:** Defined to be the percentage of time over any 24-hour interval that the PDOP value is less than or equal to its threshold for any point within the service volume.

**Positioning Accuracy:** Defined to be the statistical difference, at a 95% probability, between position measurements and a surveyed benchmark for any point within the service volume over any 24-hour interval.

- **Horizontal Positioning Accuracy:** Defined to be the statistical difference, at a 95% probability, between horizontal position measurements and a surveyed benchmark for any point within the service volume over any 24-hour interval.
- **Vertical Positioning Accuracy:** Defined to be the statistical difference, at a 95% probability, between vertical position measurements and a surveyed benchmark for any point within the service volume over any 24-hour interval.

**Position Solution:** An estimate of a user's location derived from ranging signal measurements and navigation data from GPS.

**Position Solution Geometry:** The set of direction cosines that define the instantaneous relationship of each satellite's ranging signal vector to each of the position solution coordinate axes.

**Pseudo Random Noise (PRN):** A binary sequence that appears to be random over a specified time interval unless the shift register configuration and initial conditions for generating the sequence are known. Each satellite generates a unique PRN sequence that is effectively uncorrelated (orthogonal) to any other satellite's code over the integration time constant of a receiver's code tracking loop.

**Representative SPS Receiver:** The minimum signal reception and processing assumptions employed by the U.S. Government to characterize SPS performance in accordance with performance standards defined in Section 3 of the SPS Performance Standard. Representative SPS receiver capability assumptions are identified in Section 2.2 of the SPS Performance Standard.

**Right Ascension of Ascending Node (RAAN):** Equatorial angle from the celestial principal direction to the ascending node.

**Root Mean Square (RMS) SIS URE:** A statistic that represents instantaneous SIS URE performance in an RMS sense over some sample interval. The statistic can be for an individual satellite or for the entire constellation. The sample interval for URE assessment used in the SPS Performance Standard is 24 hours.

**Selective Availability:** Protection technique formerly employed to deny full system accuracy to unauthorized users. SA was discontinued effective midnight May 1, 2000.

**Service Availability:** Defined to be the percentage of time over any 24-hour interval that the predicted 95% positioning error is less than its threshold for any given point within the service volume.

- **Horizontal Service Availability:** Defined to be the percentage of time over any 24-hour interval that the predicted 95% horizontal error is less than its threshold for any point within the service volume.
- **Vertical Service Availability:** Defined to be the percentage of time over any 24-hour interval that the predicted 95% vertical error is less than its threshold for any point within the service volume.

**Service Degradation:** A condition over a time interval during which one or more SPS performance standards are not supported.

**Service Failure:** A condition over a time interval during which a healthy GPS satellite's ranging signal exceeds the Not-to-Exceed (NTE) SPS SIS URE tolerance.

**Service Reliability:** The percentage of time over a specified time interval that the instantaneous SIS SPS URE is maintained within a specified reliability threshold at any given point within the service volume, for all healthy GPS satellites.

**Service Volume:** The spatial volume supported by SPS performance standards. Specifically, the SPS Performance Standard supports the terrestrial service volume. The terrestrial service volume covers from the surface of the Earth up to an altitude of 3,000 kilometers.

**SPS Performance Envelope:** The range of nominal variation in specified aspects of SPS performance.

**SPS Performance Standard:** A quantifiable minimum level for a specified aspect of GPS SPS performance. SPS performance standards are defined in Section 3.0.

**SPS Ranging Signal:** An electromagnetic signal originating from an operational satellite. The SPS ranging signal consists of a Pseudo Random Noise (PRN) C/A code, a timing reference and sufficient data to support the position solution generation process. A description of the GPS SPS signal is provided in Section 2. The formal definition of the SPS ranging signal is provided in ICD IS-GPS-200G.

**SPS Ranging Signal Measurement:** The difference between the ranging signal time of reception (as determined by the receiver's clock) and the time of transmission derived from the navigation signal (as defined by the satellite's clock) multiplied by the speed of light. Also known as the *pseudo range*.

#### SPS SIS User Range Error (URE) Statistic:

- A satellite SPS SIS URE statistic is defined to be the Root Mean Square (RMS) difference between SPS ranging signal measurements (neglecting user clock bias and errors due to propagation environment and receiver), and "true" ranges between the satellite and an SPS user at any point within the service volume over a specified time interval.
- A constellation SPS SIS URE statistic is defined to be the average of all satellite SPS SIS URE statistics over a specified time interval.

**Time Transfer Accuracy Relative to UTC (USNO):** The difference at a 95% probability between user UTC time estimates and UTC (USNO) at any point within the service volume over any 24-hour interval.

**Transient Behavior:** Short-term behavior not consistent with steady-state expectations.

**Usable SPS Ranging Signal:** An SPS ranging signal that can be received, processed, and used in a position solution by a receiver with representative SPS receiver capabilities.

**User Navigation Error (UNE):** Given a sufficiently stationary and ergodic satellite constellation ranging error behavior over a minimum sample interval, multiplication of the DOP and a constellation ranging error standard deviation value will yield an approximation of the RMS position error. This RMS approximation is known as the UNE (UHNE for horizontal, UVNE for vertical, and so on). The user is cautioned that any divergence away from the stationary and ergodic assumptions will cause the UNE to diverge from a RMS value based on actual measurements.

User Range Accuracy (URA): A conservative representation of each satellite's expected  $(1\sigma)$  SIS URE performance (excluding residual group delay) based on historical data. A URA value is provided that is representative over the curve fit interval of the navigation data from which the URA is read. The URA is a coarse representation of the URE statistic in that it is quantized to levels represented in ICD IS-GPS-200G.

#### 11 GPS Broadcast Orbit Versus NGA Precise Orbits and URA (IAURA) Bounding Analyses

As part of the WAAS off-line monitoring process, the accuracy of the GPS broadcast ephemeris is periodically compared to the NGA precise orbit information to monitor the validity of an a priori assumption concerning the accuracy of the GPS broadcast ephemeris information. That a priori assumption is part of a brute force computer simulation analysis utilized as part of the safety proof of the WAAS MT-28 functionality. That brute force analysis searches a simulated error sphere around a GPS satellite for a worst-case projection of post correction ephemeris error to any user. A pessimistic extrapolation of historical data was used as an a priori to limit the radius of the searched sphere to a finite distance. This periodic off-line monitoring verifies that the original logic of the a priori assumption remains sound.

The assumption being validated is:

Height Error: +/- 15 meters (standard deviation < 2.8 m),

Along Track Error: +/- 65 meters (standard deviation < 12.2 m)

Cross Track Error: +/- 30 meters (standard deviation < 5.6 m)

C/A Nav data URA bounding and L2C CNAV IAURA bounding performance are also evaluated.

For C/A Nav data, all IGS high rate 15-minute broadcast navigation data RINEX format files are downloaded and merged into 24 hour broadcast navigation data files which are then added to RINEX nav data files from all WAAS peripheral reference stations. A majority voting algorithm is used to screen the navigation data after a LSB recovery algorithm is applied. NGA APC precise ephemeris referenced to the GPS satellite antenna phase center is downloaded from the NGA site. GPS satellite positions are computed every 15 minutes and differenced with the precise orbits. The resulting error information is then segregated into the Height, Along Track, and Cross Track (HAC) error data. The standard deviation of those errors is then computed for each dimension for each satellite. Figures 11-1.1 through 11-1.4 show the standard deviation results.

The assumption is valid if a 5.33 scaling of the standard deviation across all satellites is within the a priori. Three months of data from July 01 to September 30, 2017 is presented. Only data points where GPS is healthy and valid precise data is available are considered. There was maintenance on PRN-1 on 09/14/17, PRN-2 on 07/06/17 and 08/18/17, PRN-5 on 07/13/17 and 08/31/17, PRN-7 on 07/18/17 to 07/19/17 and 09/12/17, PRN-9 on 08/11/17 and 08/25/17, PRN-12 on 08/24/17, PRN-13 on 09/07/17, PRN-15 on 08/10/17, PRN-17 on 08/08/17, PRN-21 on 08/29/17, PRN-23 on 07/11/17, PRN-25 on 08/03/17 and 09/17/17, PRN-26 on 09/19/17, PRN-29 on 08/22/17, and PRN-31 on 08/15/17. Figure 11-5 shows the availability of C/A Nav data. There were no points where GPS was healthy and the NGA data was missing. There are no points where GPS C/A GPS Nav data is unavailable other than during NANUs.

For L2C CNAV data, raw 300 bit L2C and L5 CNAV message data is obtained from the WAAS G3 test receivers located at the NSTB ACY reference station. Those receivers are located at the William J. Hughes Technical Center in Atlantic City, NJ. CNAV data was only available while the satellites were in view of ACY. This is the reason for the sparseness in the CNAV data. Because of the sparseness of the data, CNAV data from rising and setting satellites was used for the entire 3-hour fit interval, even though on rising and setting satellites there would have normally been an

ephemeris set update at the 2 hour points. Those missing updates may or may not have provided improvement to the accuracy. L2C is used because there are more L2C capable satellites than L5 capable satellites. There was no missing data for the quarter.

The sign convention for this analysis is error = broadcast ECEF - precise ECEF. Along track is positive in the direction of the velocity vector. Cross track completes a right hand system with height and along track.

Figures 11-7 and 11-8 are URA (IAURA) over bounding plots. URA bounding using C/A Nav data used the maximum of the range indicated by the broadcast URA index. IAURA bounding using CNAV data used the algorithm from IS-GPS-200 / IS-GPS-705. The error used in the analysis is at the location of maximum error in the footprint (usually edge of coverage). Review of the bounding plots, the QQ plots, and the histograms indicates that CNAV data is not as conservative as using the max URA from the C/A Nav data. The CNAV over bounding plot does not pass. Sparseness of data may have contributed to the failure to over bound. (i.e. using the full 3-hour fit interval at the beginning and end of tracks)

Figures 11-9 thru 11-58 are plots of the height, along track, and cross track error relative to NGA precise orbits by PRN number. These plots do not include clock error.

Figures 11-59 thru 11-70 are QQ plots of the URA (IAURA) normalized total range error (height, along track, cross track, and clock) projected onto the surface of the earth. +/- 13.9° from the bore sight of the satellite is used to approximate the surface of the earth. The max URA of the broadcast URA index range is used for the C/A Nav data, IAURA is used for the CNAV data. The range of the QQ plot axis has been fixed at +/- 5. Annotations are provided for any instances beyond that range.

Errors larger than 3 times URA (IAURA) for C/A and 4 times URA (IURA) for CNAV were investigated.

Figures 11-71 thru 11-117 are histograms of the height error, along track error, cross track error, and URA (IAURA) normalized range error.

Figures 11-118 thru 11-164 are the timelines of the URA (IAURA) normalized range error. Missing data point are in red and are NANUs for the C/A data. The large number of red points in the CNAV data is the points where the satellites are out of view of ACY.

## Figure 11-1 GPS Broadcast Orbit Accuracy Standard Deviation Plots

Figure 11-2 GPS Broadcast Orbit Accuracy Standard Deviations Using C/A Nav Data

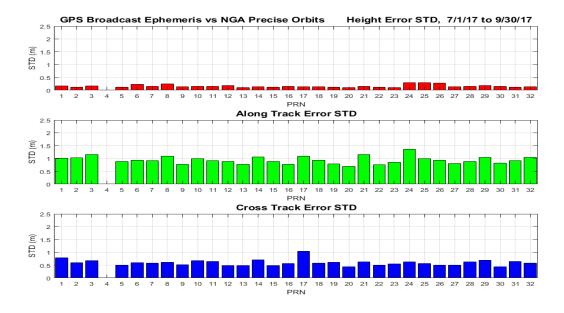
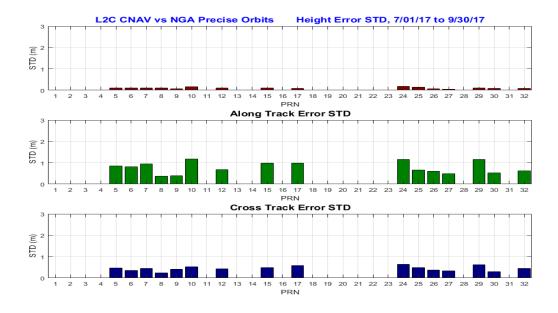
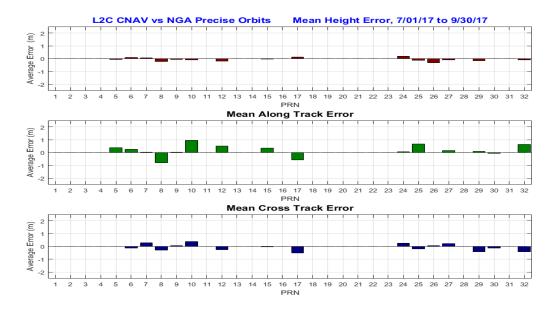
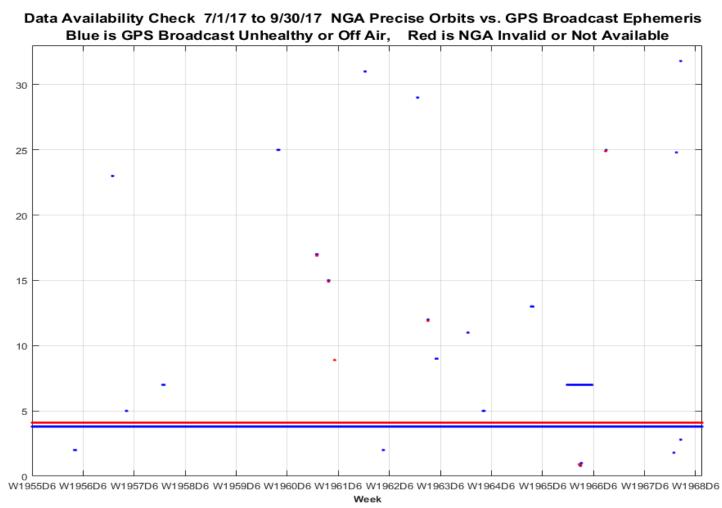



Figure 11-3 GPS Broadcast Orbit Accuracy Standard Deviations Using L2C CNAV Data



Figure 11-4 GPS Broadcast Orbit Error Means Using C/A Nav Data





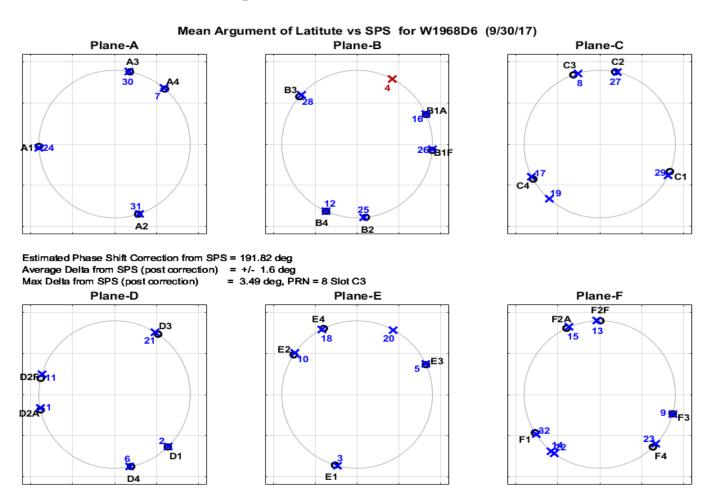

## Broadcast Ephemeris vs. NGA Precise Data Availability Plots

Figure 11-6 Broadcast Ephemeris vs. NGA Precise Data Availability Plots



#### **Current GPS Constellation**

**Figure 11-7 Current GPS Constellation** 



## **URA Over-bounding Plots**

Figure 11-8 URA Over-bounding Using C/A Nav Data

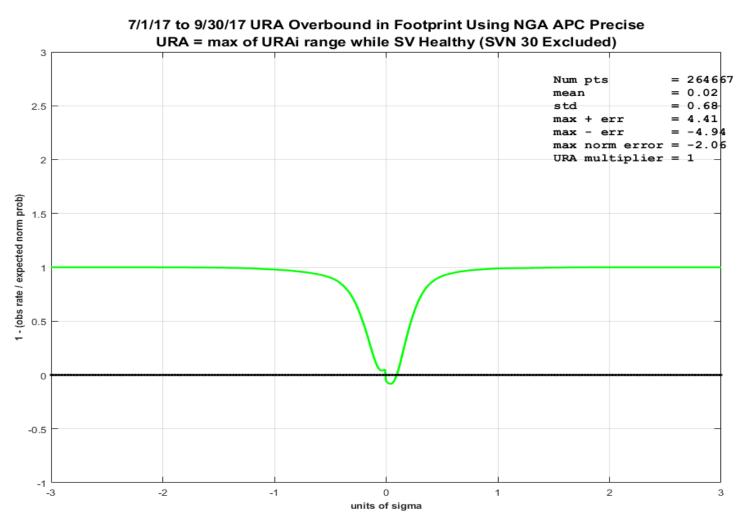
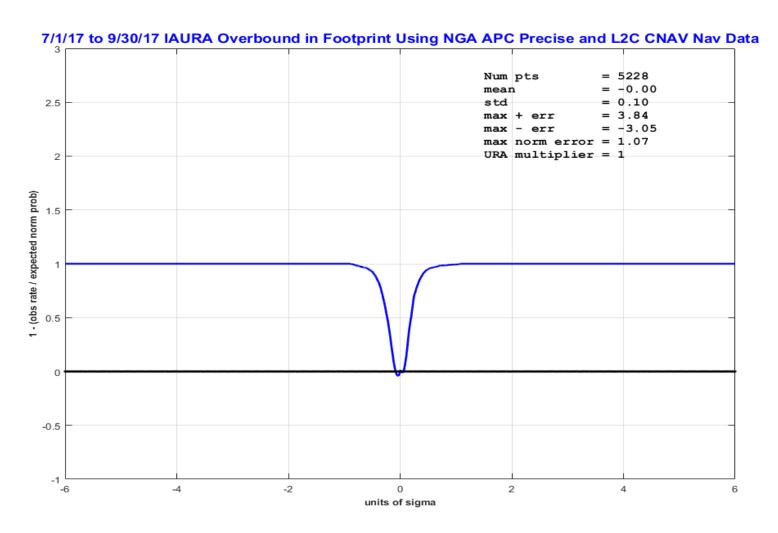



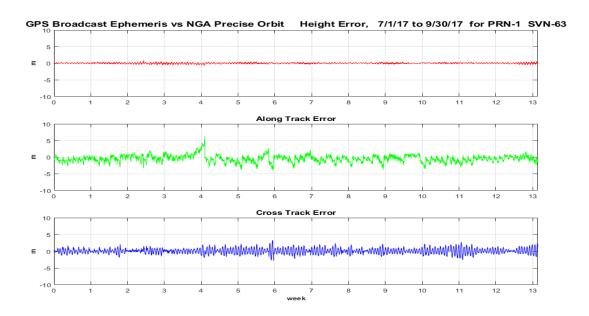
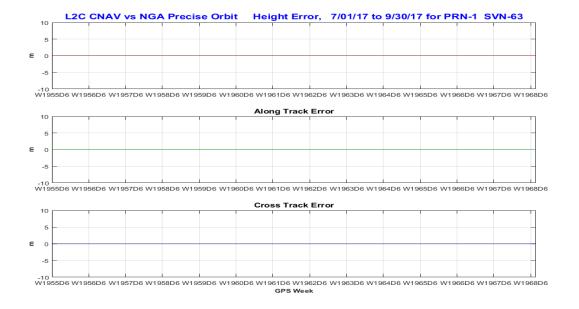

Figure 11-9 IAURA Over-bounding Using L2C CNAV Data

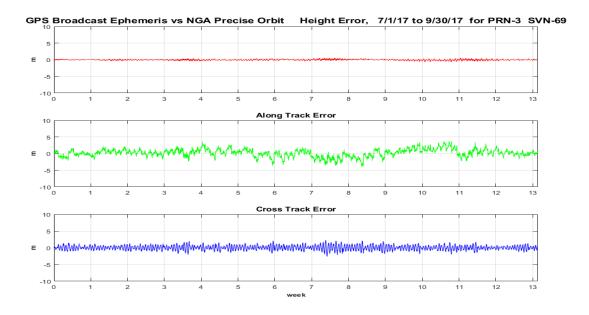


Report 49 8

## **Orbit Error Plots for All Satellites**

Figure 11-10 Orbit Error PRN-1 (SVN-63) Using C/A Nav Data



Figure 11-11 Orbit Error PRN-1 (SVN-63) Using L2C CNAV Data



GPS Broadcast Ephemeris vs NGA Precise Orbit Height Error, 7/1/17 to 9/30/17 for PRN-2 SVN-61

Figure 11-12 Orbit Error PRN-2 (SVN-61) Using C/A Nav Data





L2C CNAV vs NGA Precise Orbit Height Error, 7/01/17 to 9/30/17 for PRN-3 SVN-69

10

W195SD6 W195SD6 W195FD6 W195SD6 W195SD6 W196SD6 W196D6 W196D6 W196SD6 W19

Figure 11-14 Orbit Error PRN-3 (SVN-69) Using L2C CNAV Data



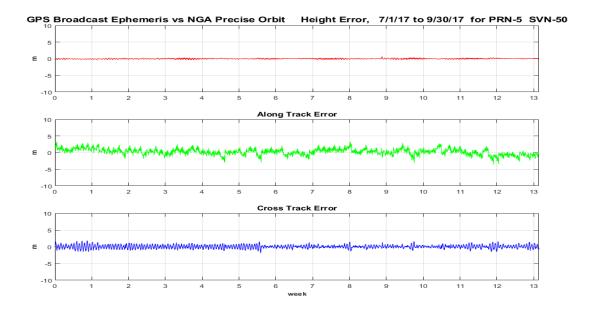



Figure 11-16 Orbit Error PRN-5 (SVN-50) Using L2C CNAV Data



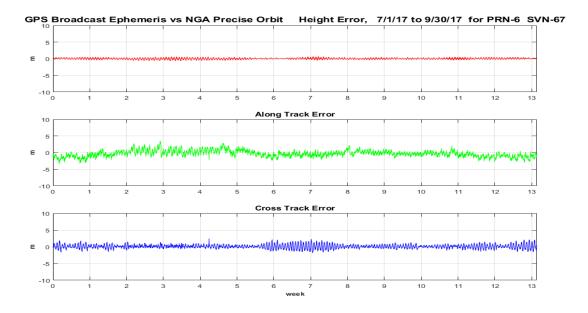



Figure 11-18 Orbit Error PRN-6 (SVN-67) Using L2C CNAV Data



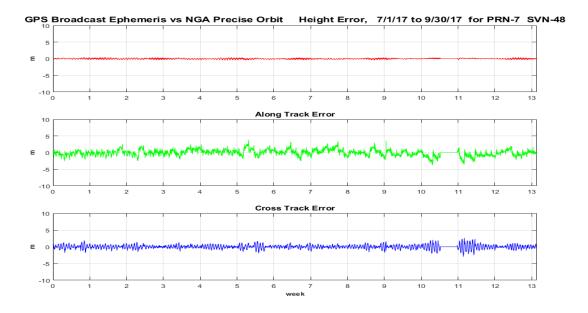
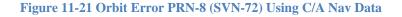
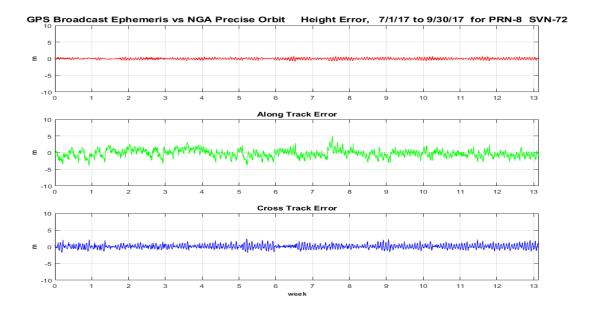





Figure 11-20 Orbit Error PRN-7 (SVN-48) Using L2C CNAV Data





L2C CNAV vs NGA Precise Orbit Height Error, 7/01/17 to 9/30/17 for PRN-8 SVN-72

10

10

10

W1955D6 W1955D6 W1955D6 W1955D6 W1958D6 W1959D6 W1960D6 W1961D6 W1962D6 W1963D6 W1964D6 W1965D6 W1965D6 W1967D6 W1968D6

Along Track Error

W1955D6 W1956D6 W1957D6 W1958D6 W1958D6 W1960D6 W1961D6 W1962D6 W1963D6 W1964D6 W1965D6 W1966D6 W1967D6 W1968D6

Cross Track Error

10

10

Cross Track Error

10

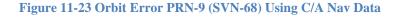
5

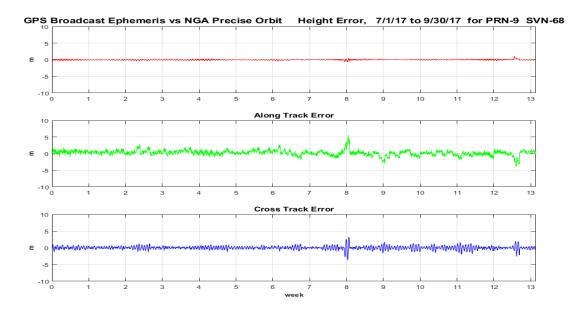
6

10

Cross Track Error

10


5


6

10

Cross Track Error

Figure 11-22 Orbit Error PRN-8 (SVN-72) Using L2C CNAV Data





L2C CNAV vs NGA Precise Orbit Height Error, 7/01/17 to 9/30/17 for PRN-9 SVN-68

10

5

6

10

W1955D6 W1955D6 W1956D6 W1957D6 W1958D6 W1959D6 W1960D6 W1961D6 W1962D6 W1963D6 W1964D6 W1965D6 W1965D6 W1967D6 W1968D6

Along Track Error

W1955D6 W1956D6 W1957D6 W1958D6 W1958D6 W1960D6 W1961D6 W1962D6 W1963D6 W1964D6 W1965D6 W1966D6 W1967D6 W1968D6

Cross Track Error

10

5

6

Cross Track Error

10

5

6

10

Cross Track Error

10

5

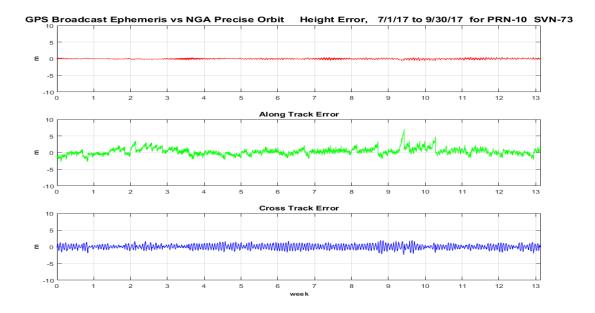
6

10

Cross Track Error

Figure 11-24 Orbit Error PRN-9 (SVN-68) Using L2C CNAV Data





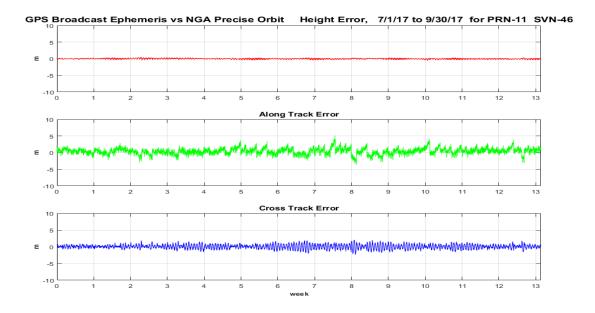



Figure 11-26 Orbit Error PRN-10 (SVN-73) Using L2C CNAV Data





GPS Broadcast Ephemeris vs NGA Precise Orbit Height Error, 7/1/17 to 9/30/17 for PRN-12 SVN-58

Figure 11-28 Orbit Error PRN-12 (SVN-58) Using C/A Nav Data



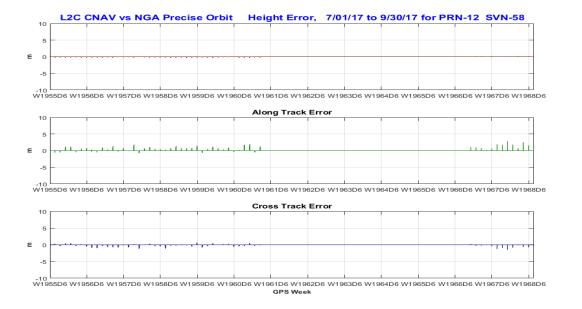
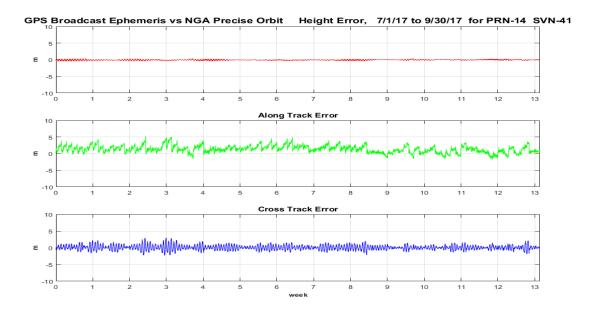




Figure 11-30 Orbit Error PRN-13 (SVN-43) Using C/A Nav Data





GPS Broadcast Ephemeris vs NGA Precise Orbit Height Error, 7/1/17 to 9/30/17 for PRN-15 SVN-55

Figure 11-32 Orbit Error PRN-15 (SVN-55) Using C/A Nav Data



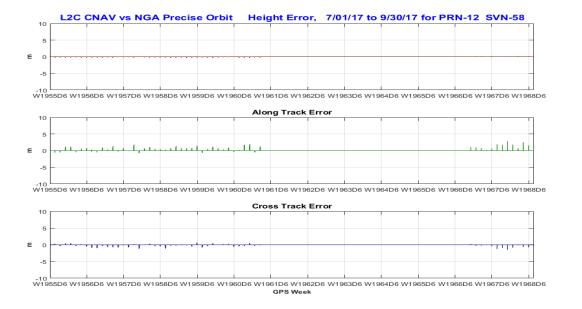



Figure 11-34 Orbit Error PRN-16 (SVN-56) Using C/A Nav Data



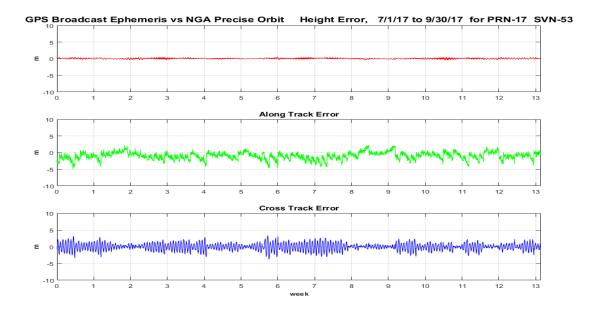



Figure 11-36 Orbit Error PRN-17 (SVN-53) Using L2C CNAV Data



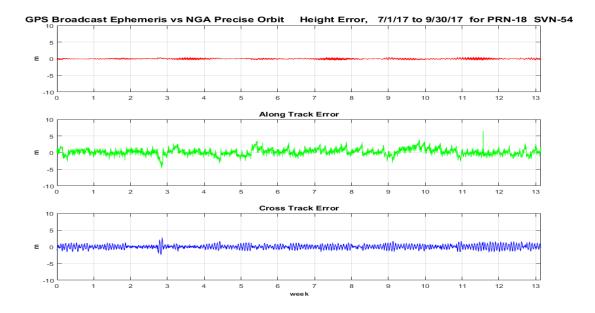



Figure 11-38 Orbit Error PRN-19 (SVN-59) Using C/A Nav Data



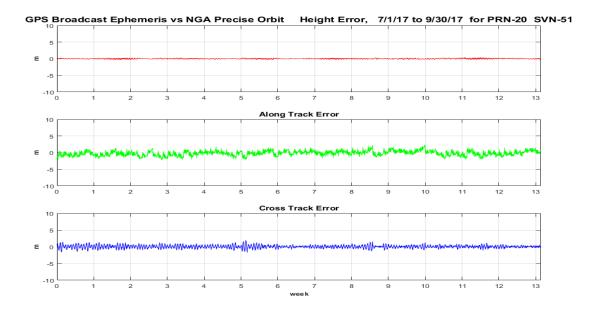



Figure 11-40 Orbit Error PRN-21 (SVN-45) Using C/A Nav Data



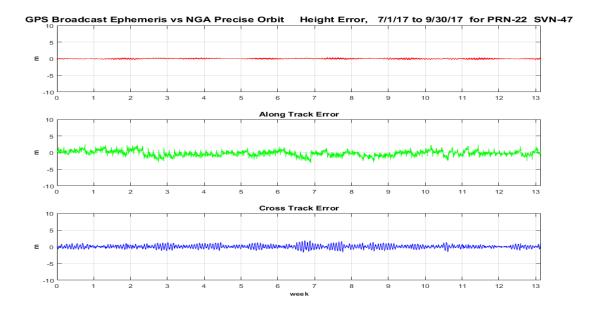



Figure 11-42 Orbit Error PRN-23 (SVN-60) Using C/A Nav Data



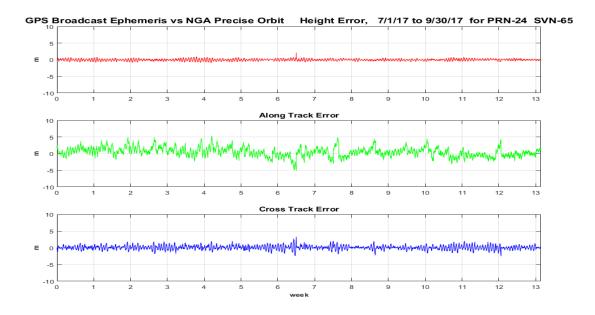



Figure 11-44 Orbit Error PRN-24 (SVN-65) Using L2C CNAV Data



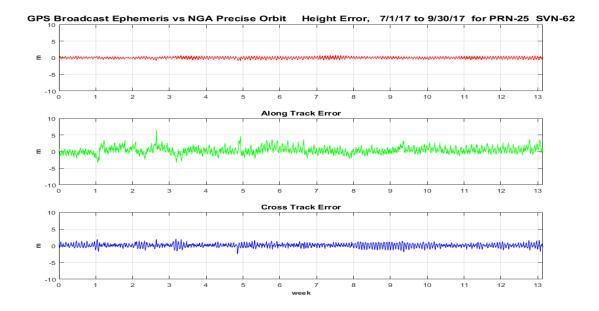



Figure 11-46 Orbit Error PRN-25 (SVN-62) Using L2C CNAV Data



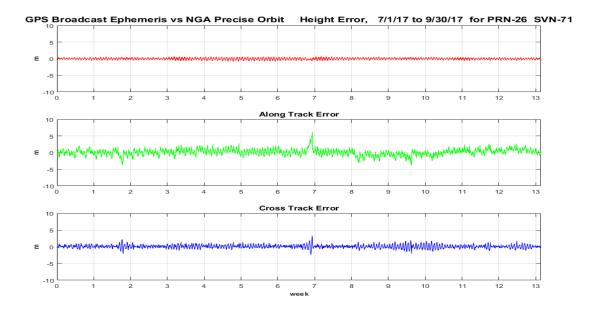
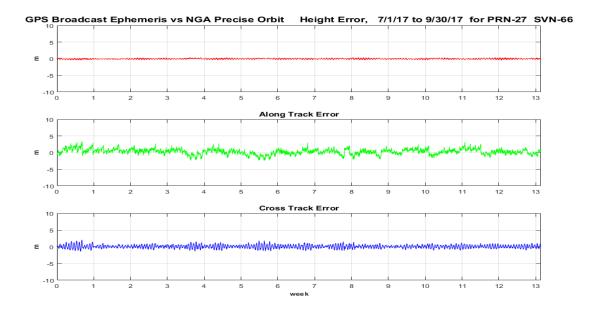




Figure 11-48 Orbit Error PRN-26 (SVN-71) Using L2C CNAV Data





L2C CNAV vs NGA Precise Orbit Height Error, 7/01/17 to 9/30/17 for PRN-27 SVN-66

10

10

W1955D6 W1955D6 W1955D6 W1955D6 W1958D6 W1959D6 W1960D6 W1961D6 W1962D6 W1963D6 W1964D6 W1965D6 W1965D6 W1967D6 W1968D6

Along Track Error

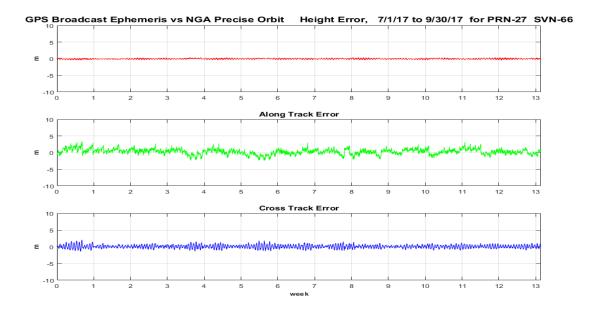
W1955D6 W1956D6 W1957D6 W1958D6 W1958D6 W1960D6 W1961D6 W1962D6 W1963D6 W1964D6 W1965D6 W1966D6 W1967D6 W1968D6

Cross Track Error

10

Cross Track Error

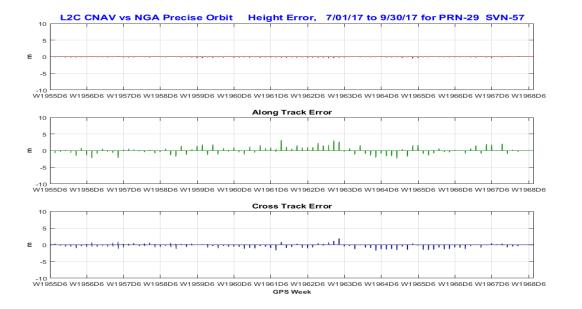
10


SCROSS Track Error

10

Cross Track Error

Figure 11-50 Orbit Error PRN-27 (SVN-66) Using L2C CNAV Data





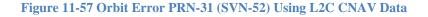

GPS Broadcast Ephemeris vs NGA Precise Orbit Height Error, 7/1/17 to 9/30/17 for PRN-29 SVN-57

Figure 11-52 Orbit Error PRN-29 (SVN-57) Using C/A Nav Data





GPS Broadcast Ephemeris vs NGA Precise Orbit Height Error, 7/1/17 to 9/30/17 for PRN-30 SVN-64


Figure 11-54 Orbit Error PRN-30 (SVN-64) Using C/A Nav Data





GPS Broadcast Ephemeris vs NGA Precise Orbit Height Error, 7/1/17 to 9/30/17 for PRN-31 SVN-52

Figure 11-56 Orbit Error PRN-31 (SVN-52) Using C/A Nav Data



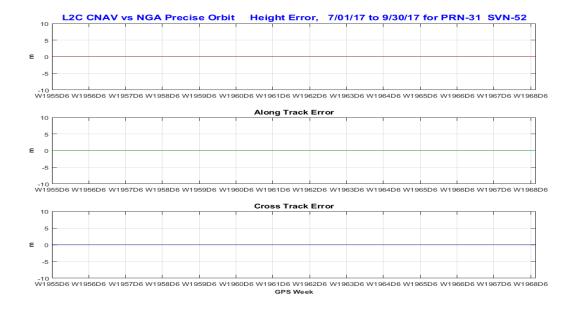
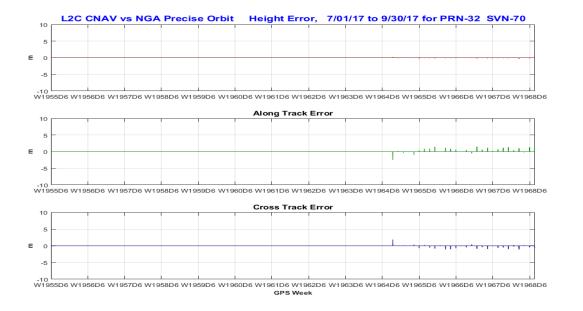




Figure 11-58 Orbit Error PRN-32 (SVN-70) Using C/A Nav Data





## **QQ Plots of URA Normalized Error for All Satellites**

Figure 11-60 QQ Plots of Range Error PRNs 1 to 5 Using C/A Nav Data

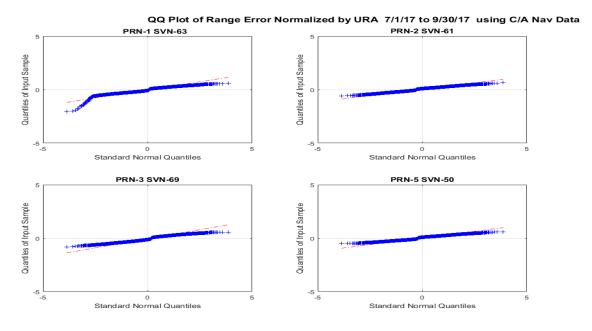
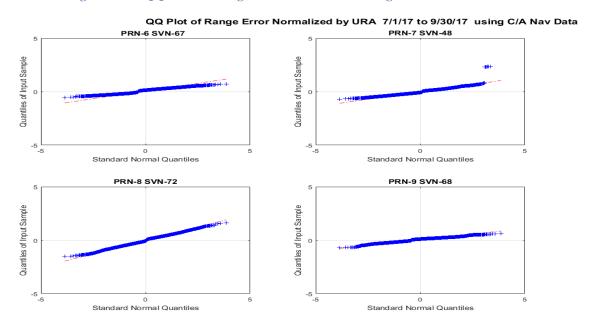




Figure 11-61 QQ Plots of Range Error PRNs 6 to 9 Using C/A Nav Data



QQ Plot of Range Error Normalized by URA 7/1/17 to 9/30/17 using C/A Nav Data
PRN-10 SVN-73
PRN-11 SVN-46

Julie 1

PRN-12 SVN-58
PRN-12 SVN-58
PRN-13 SVN-43

Julie 1

Julie 1

Julie 1

Julie 2

Julie 2

Julie 2

Julie 3

Julie 3

Julie 4

Julie 3

Julie 3

Julie 4

Julie 3

Julie 4

Julie 3

Julie 4

Julie 3

Julie 3

Julie 4

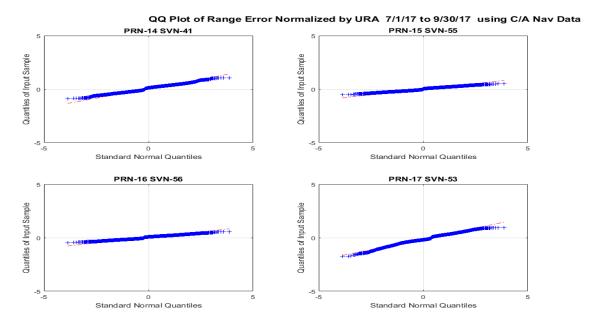
Julie 3

Julie 4

Julie 4

Julie 4

Julie 4

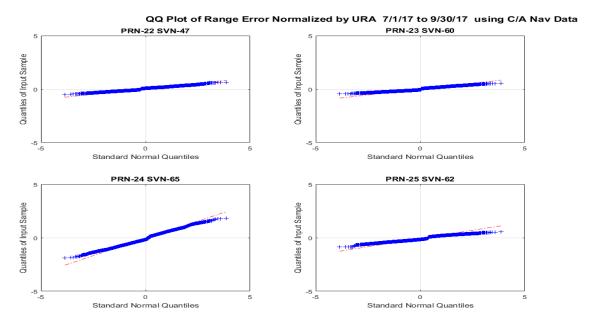

Julie 5

Julie 4

Julie

Figure 11-62 QQ Plots of Range Error PRNs 10 to 13 Using C/A Nav Data






QQ Plot of Range Error Normalized by URA 7/1/17 to 9/30/17 using C/A Nav Data
PRN-18 SVN-54
PRN-19 SVN-59

Julie PRN-20 SVN-51
PRN-20 SVN-51
PRN-20 SVN-51
PRN-20 SVN-51
Standard Normal Quantiles
Standard Normal Quantiles
Standard Normal Quantiles
Standard Normal Quantiles

Figure 11-64 QQ Plots of Range Error PRNs 18 to 21 Using C/A Nav Data





QQ Plot of Range Error Normalized by URA 7/1/17 to 9/30/17 using C/A Nav Data
PRN-26 SVN-71
PRN-27 SVN-66

July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9 July 10 9

Figure 11-66 QQ Plots of Range Error PRNs 26 to 29 Using C/A Nav Data



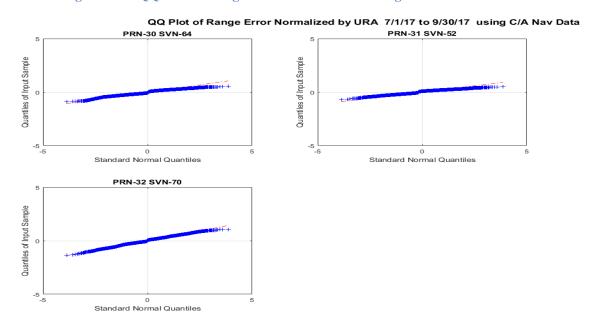



Figure 11-68 QQ Plots of Range Error PRNs 5, 6, 7, and 8 Using L2C CNAV Data

of Range Error Normalized by IAURA for 7/1/17 to 9/30/17 using L2C CNAV data

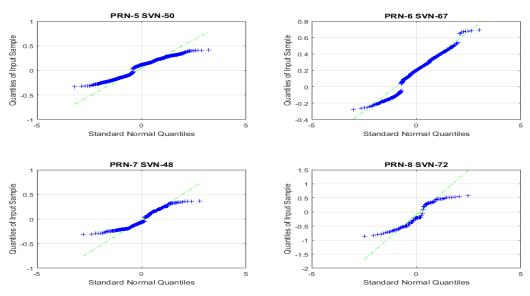



Figure 11-69 QQ Plots of Range Error PRNs 9, 10, 12, and 15 Using L2C CNAV Data

of Range Error Normalized by IAURA for 7/1/17 to 9/30/17 using L2C CNAV data

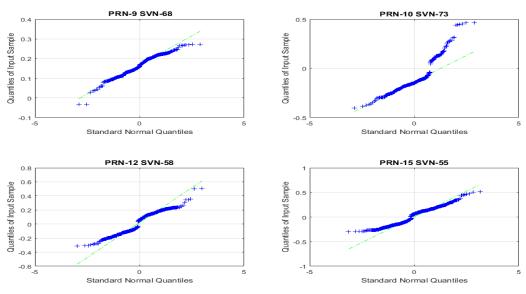



Figure 11-70 QQ Plots of Range Error PRNs 17, 24, 25, and 26 Using L2C CNAV Data

of Range Error Normalized by IAURA for 7/1/17 to 9/30/17 using L2C CNAV data

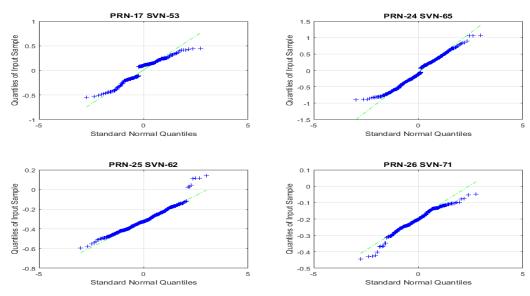
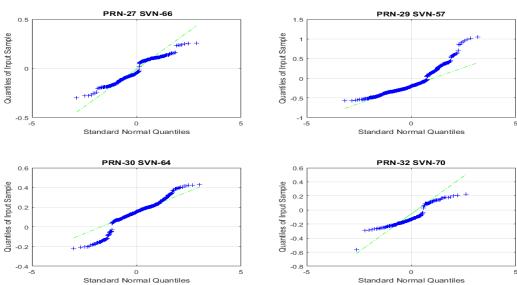




Figure 11-71 QQ Plots of Range Error PRNs 27, 29, 30, and 32 Using L2C CNAV Data

of Range Error Normalized by IAURA for 7/1/17 to 9/30/17 using L2C CNAV data



## Histogram Plost of H, A, C, and Range Error for All Satellites

Figure 11-72 Histograms of H, A, C, and Range Error PRN-1 (SVN-63) Using C/A Nav Data

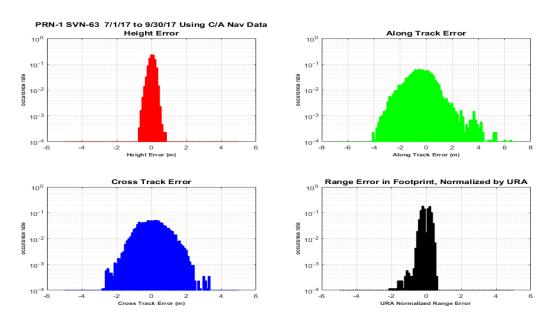



Figure 11-73 Histograms of H, A, C, and Range Error PRN-2 (SVN-61) Using C/A Nav Data

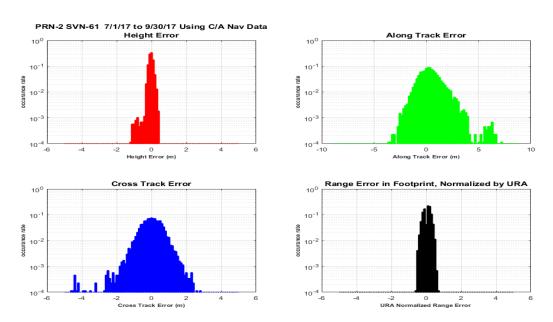



Figure 11-74 Histograms of H, A, C, and Range Error PRN-3 (SVN-69) Using C/A Nav Data

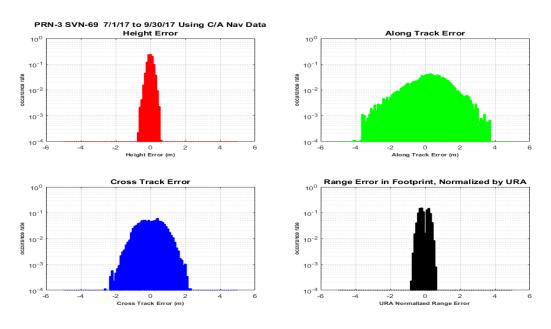



Figure 11-75 Histograms of H, A, C, and Range Error PRN-5 (SVN-50) Using C/A Nav Data

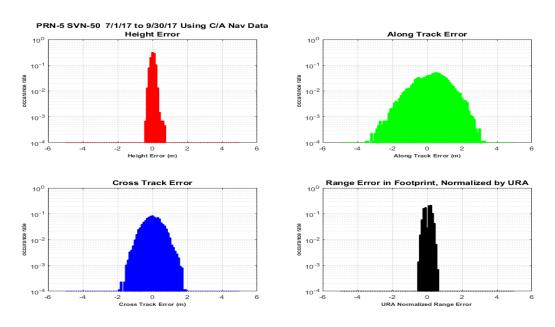



Figure 11-76 Histograms of H, A, C, and Range Error PRN-5 (SVN-50) Using L2C CNAV Data

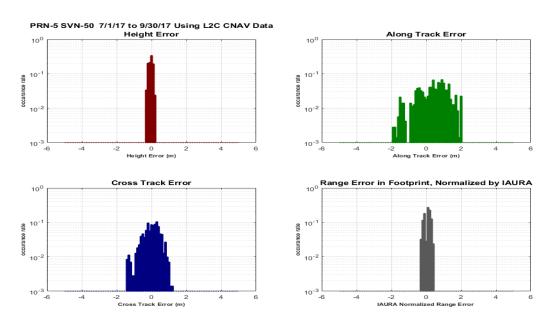



Figure 11-77 Histograms of H, A, C, and Range Error PRN-6 (SVN-67) Using C/A Nav Data

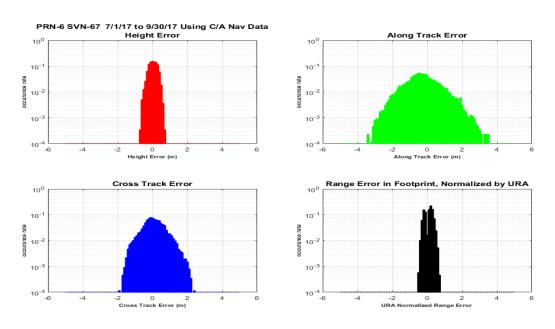



Figure 11-78 Histograms of H, A, C, and Range Error PRN-6 (SVN-67) Using L2C CNAV Data

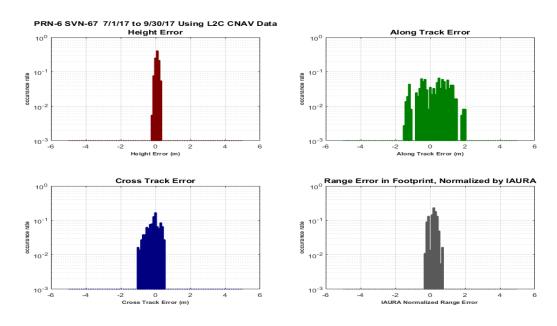



Figure 11-79 Histograms of H, A, C, and Range Error PRN-7 (SVN-48) Using C/A Nav Data

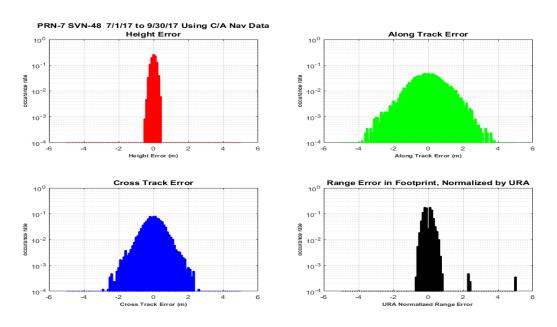



Figure 11-80 Histograms of H, A, C, and Range Error PRN-7 (SVN-48) Using L2C CNAV Data

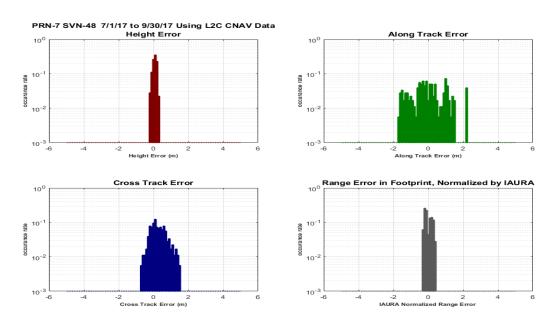



Figure 11-81 Histograms of H, A, C, and Range Error PRN-8 (SVN-72) Using C/A Nav Data

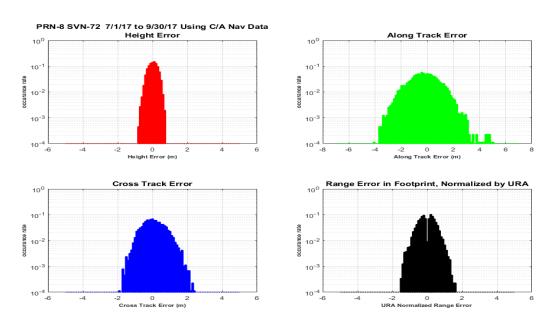



Figure 11-82 Histograms of H, A, C, and Range Error PRN-8 (SVN-72) Using L2C CNAV Data

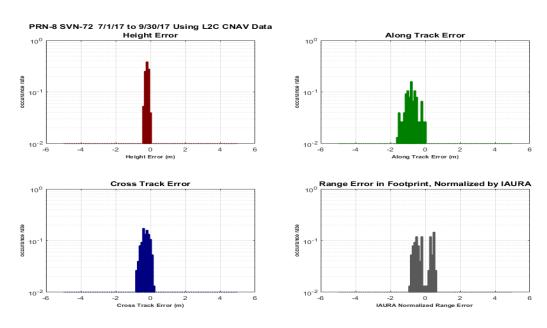



Figure 11-83 Histograms of H, A, C, and Range Error PRN-9 (SVN-68) Using C/A Nav Data

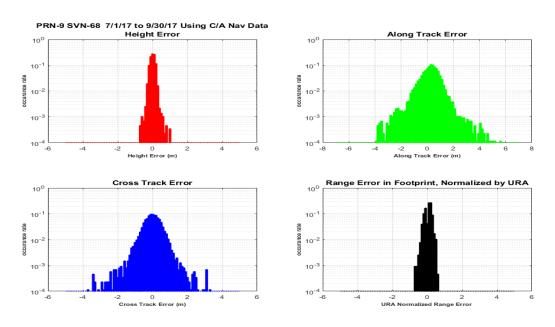



Figure 11-84 Histograms of H, A, C, and Range Error PRN-9 (SVN-68) Using L2C CNAV Data

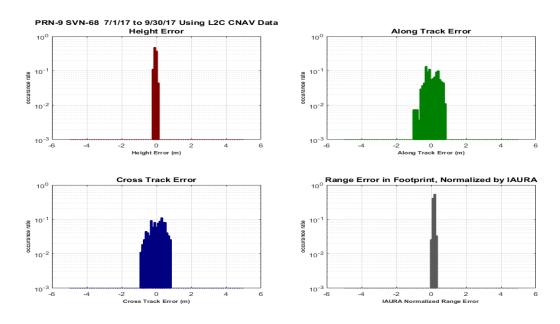



Figure 11-85 Histograms of H, A, C, and Range Error PRN-10 (SVN-73) Using C/A Nav Data

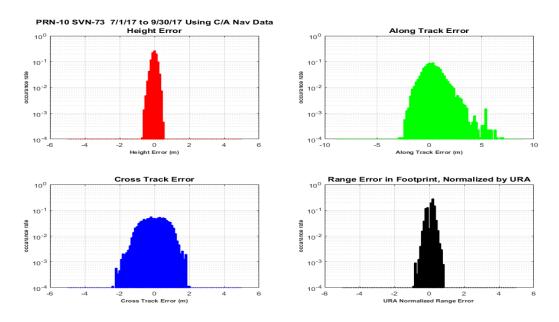



Figure 11-86 Histograms of H, A, C, and Range Error PRN-10 (SVN-73) Using L2C CNAV Data

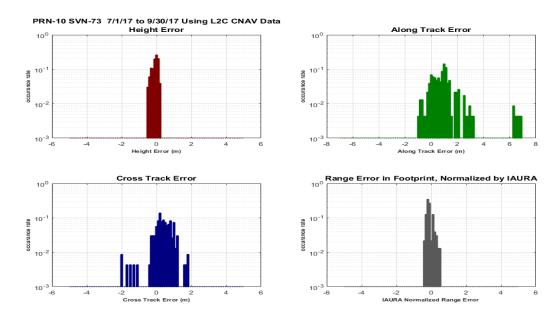



Figure 11-87 Histograms of H, A, C, and Range Error PRN-11 (SVN-46) Using C/A Nav Data

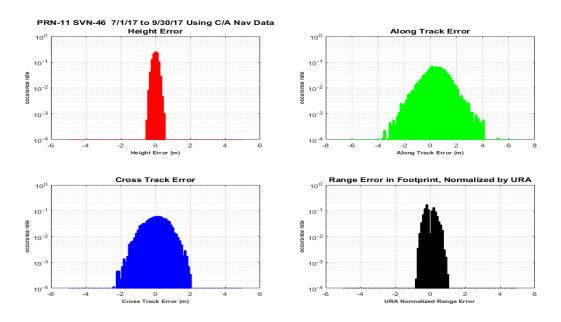



Figure 11-88 Histograms of H, A, C, and Range Error PRN-12 (SVN-58) Using C/A Nav Data

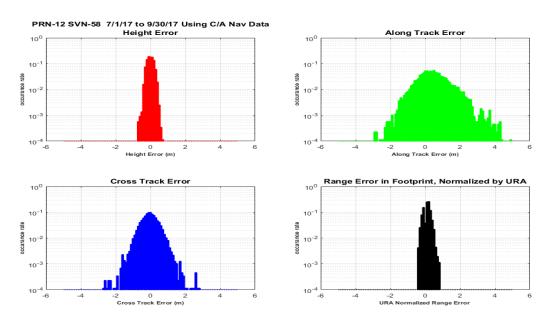



Figure 11-89 Histograms of H, A, C, and Range Error PRN-12 (SVN-58) Using L2C CNAV Data

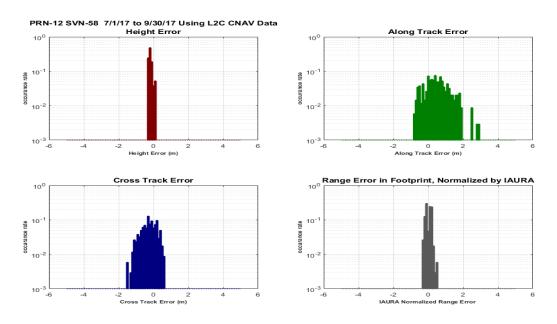



Figure 11-90 Histograms of H, A, C, and Range Error PRN-13 (SVN-43) Using C/A Nav Data

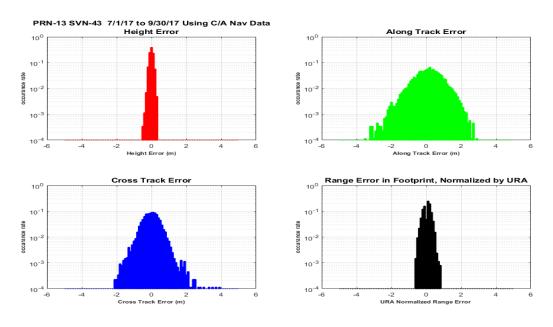



Figure 11-91 Histograms of H, A, C, and Range Error PRN-14 (SVN-41) Using C/A Nav Data

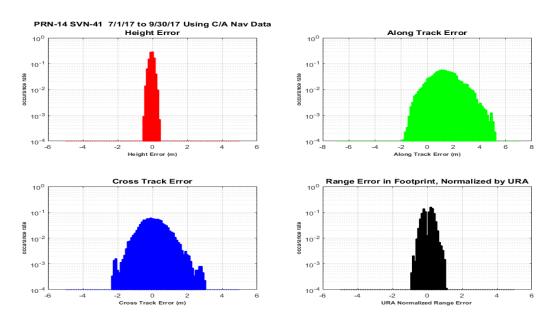



Figure 11-92 Histograms of H, A, C, and Range Error PRN-15 (SVN-55) Using C/A Nav Data

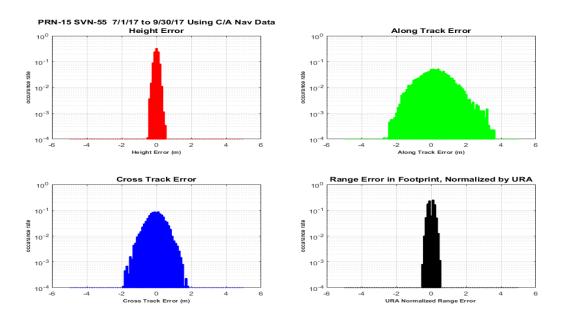



Figure 11-93 Histograms of H, A, C, and Range Error PRN-15 (SVN-55) Using L2C CNAV Data

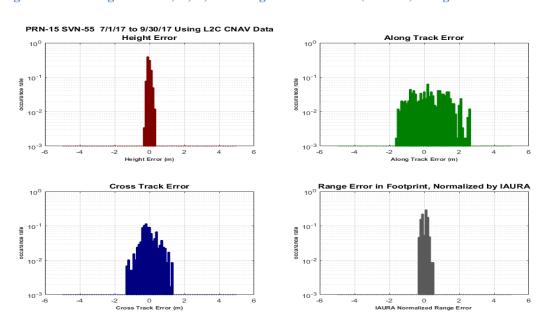



Figure 11-94 Histograms of H, A, C, and Range Error PRN-16 (SVN-56) Using C/A Nav Data

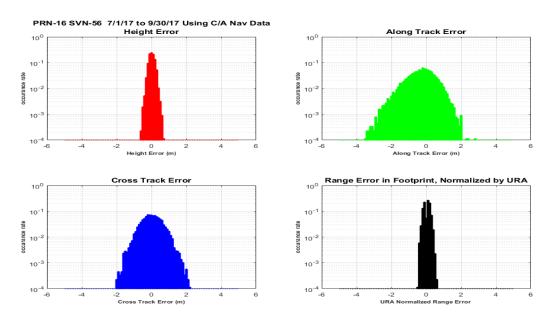



Figure 11-95 Histograms of H, A, C, and Range Error PRN-17 (SVN-53) Using C/A Nav Data

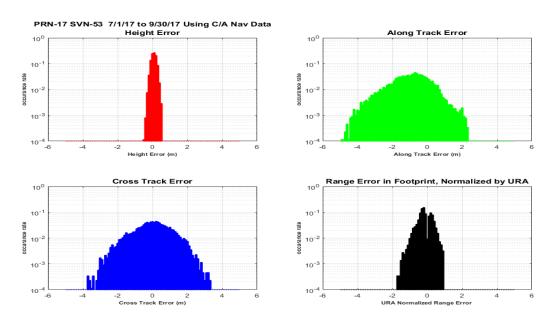



Figure 11-96 Histograms of H, A, C, and Range Error PRN-17 (SVN-53) Using L2C CNAV Data

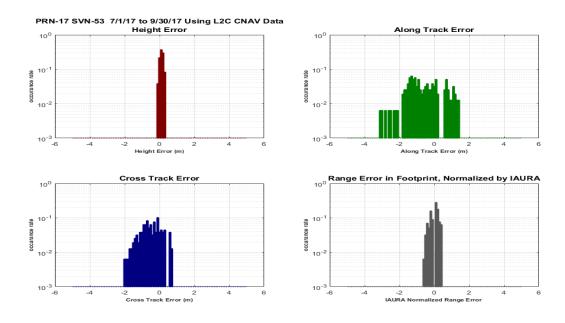



Figure 11-97 Histograms of H, A, C, and Range Error PRN-18 (SVN-54) Using C/A Nav Data

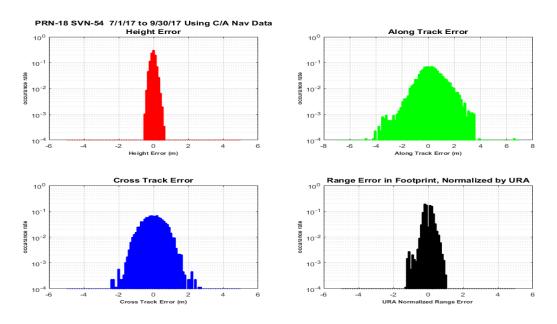



Figure 11-98 Histograms of H, A, C, and Range Error PRN-19 (SVN-59) Using C/A Nav Data

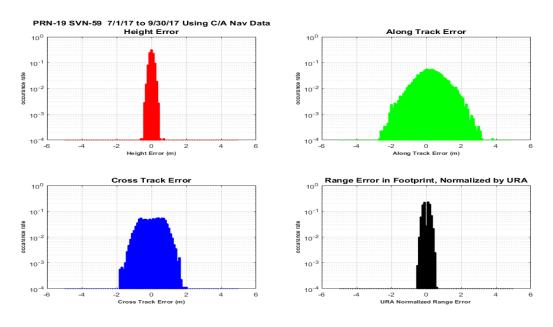



Figure 11-99 Histograms of H, A, C, and Range Error PRN-20 (SVN-51) Using C/A Nav Data

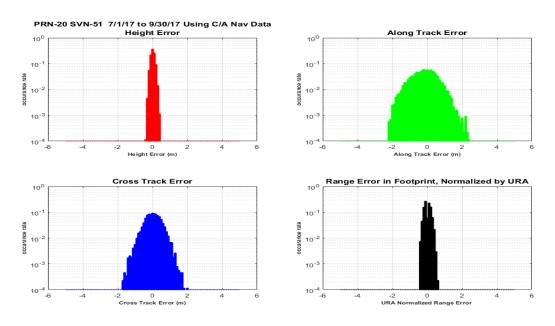



Figure 11-100 Histograms of H, A, C, and Range Error PRN-21 (SVN-45) Using C/A Nav Data

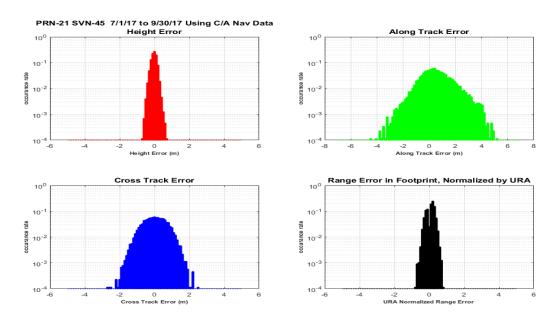



Figure 11-101 Histograms of H, A, C, and Range Error PRN-22 (SVN-47) Using C/A Nav Data

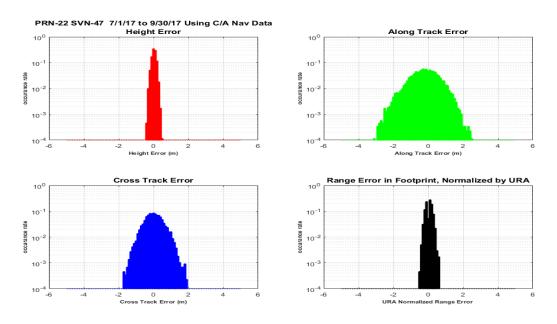



Figure 11-102 Histograms of H, A, C, and Range Error PRN-23 (SVN-60) Using C/A Nav Data

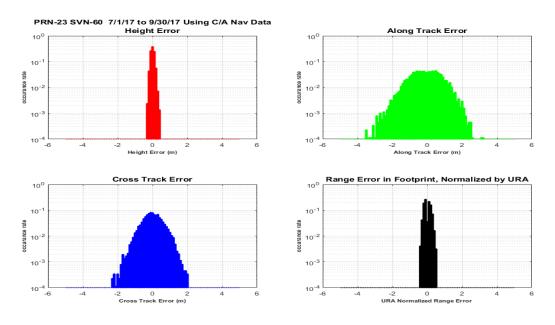



Figure 11-103 Histograms of H, A, C, and Range Error PRN-24 (SVN-65) Using C/A Nav Data



Figure 11-104 Histograms of H, A, C, and Range Error PRN-24 (SVN-65) Using L2C CNAV Data

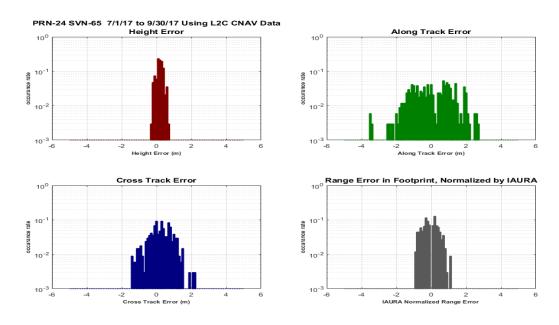



Figure 11-105 Histograms of H, A, C, and Range Error PRN-25 (SVN-62) Using C/A Nav Data

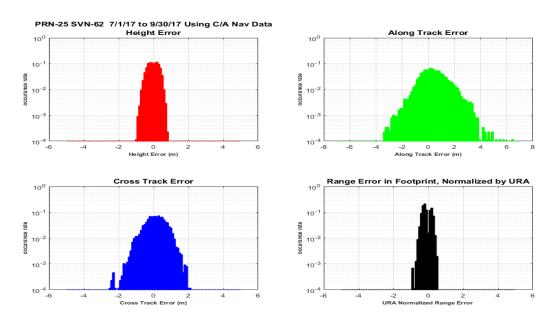



Figure 11-106 Histograms of H, A, C, and Range Error PRN-25 (SVN-62) Using L2C CNAV Data

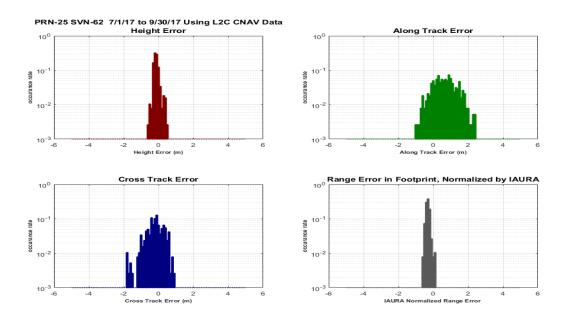



Figure 11-107 Histograms of H, A, C, and Range Error PRN-26 (SVN-71) Using C/A Nav Data

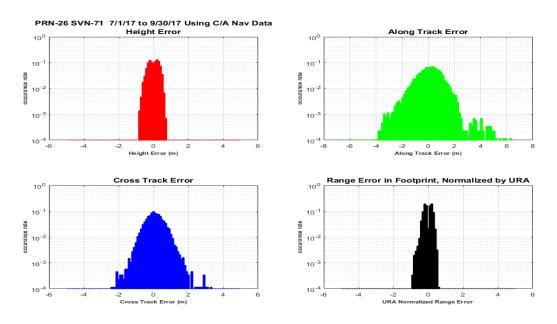



Figure 11-108 Histograms of H, A, C, and Range Error PRN-26 (SVN-71) Using L2C CNAV Data

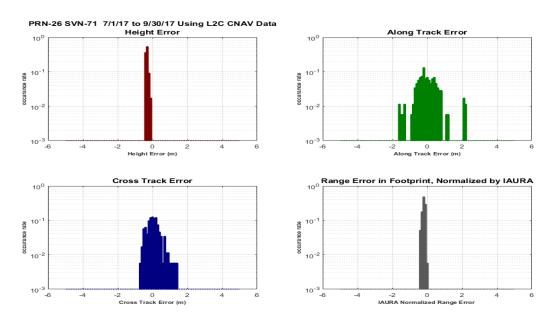



Figure 11-109 Histograms of H, A, C, and Range Error PRN-27 (SVN-66) Using C/A Nav Data

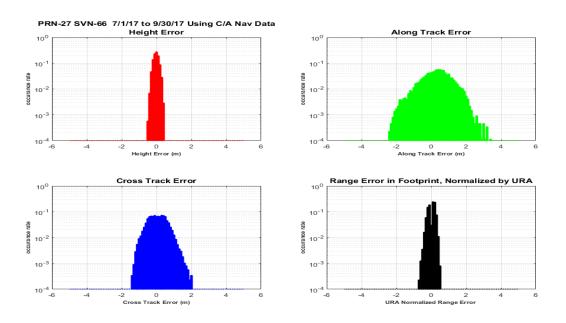



Figure 11-110 Histograms of H, A, C, and Range Error PRN-27 (SVN-66) Using L2C CNAV Data

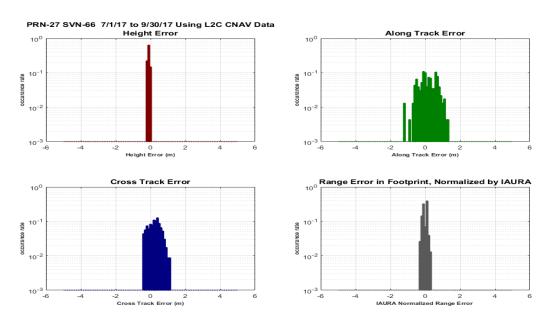



Figure 11-111 Histograms of H, A, C, and Range Error PRN-28 (SVN-44) Using C/A Nav Data

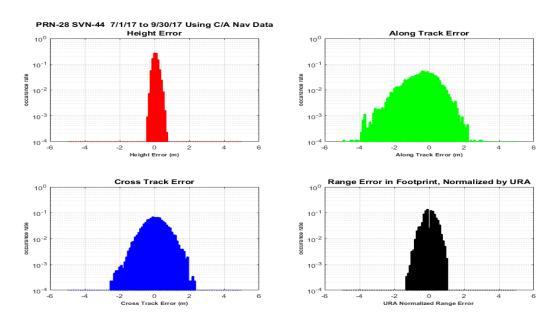



Figure 11-112 Histograms of H, A, C, and Range Error PRN-29 (SVN-57) Using C/A Nav Data

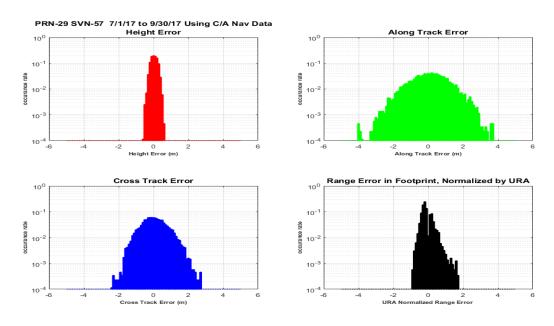



Figure 11-113 Histograms of H, A, C, and Range Error PRN-29 (SVN-57) Using L2C CNAV Data

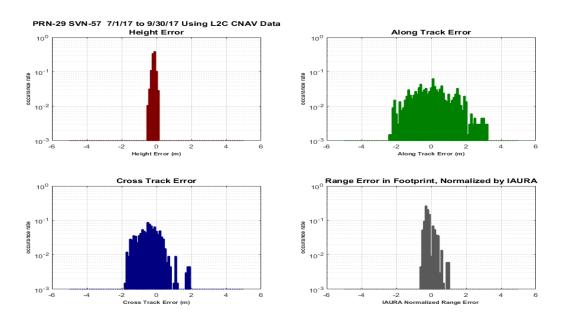



Figure 11-114 Histograms of H, A, C, and Range Error PRN-30 (SVN-64) Using C/A Nav Data

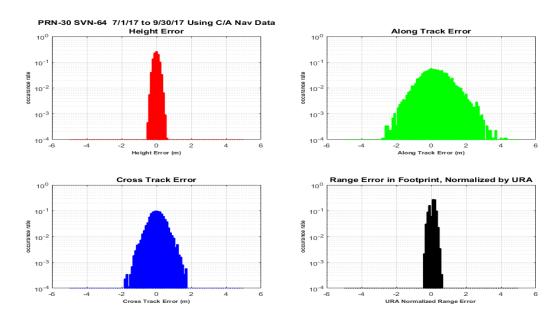



Figure 11-115 Histograms of H, A, C, and Range Error PRN-30 (SVN-64) Using L2C CNAV Data

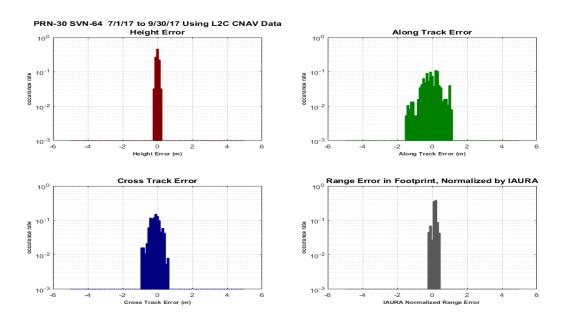



Figure 11-116 Histograms of H, A, C, and Range Error PRN-31 (SVN-52) Using C/A Nav Data

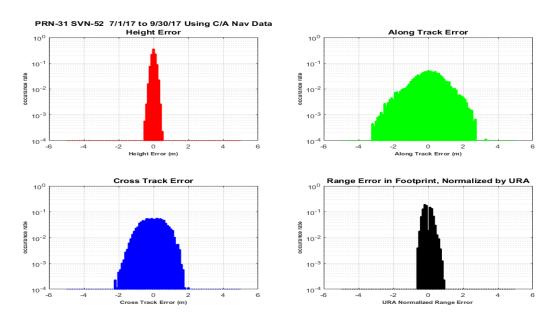



Figure 11-117 Histograms of H, A, C, and Range Error PRN-32 (SVN-70) Using C/A Nav Data

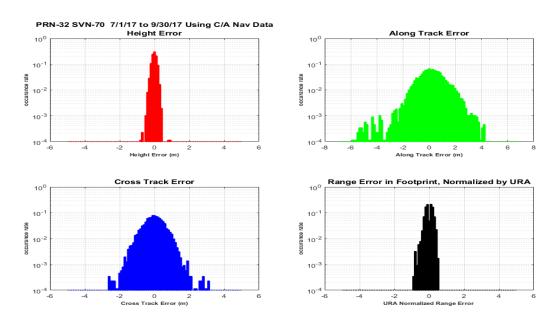
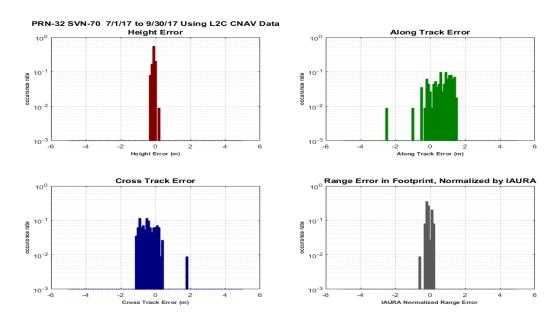




Figure 11-118 Histograms of H, A, C, and Range Error PRN-32 (SVN-70) Using L2C CNAV Data



## **Timeline of URA Normalized Range Error for All Satellites**

Figure 11-119 Timeline of URA Normalized Range Error PRN-1 (SVN-63) Using C/A Nav Data



Figure 11-120 Timeline of URA Normalized Range Error PRN-2 (SVN-61) Using C/A Nav Data

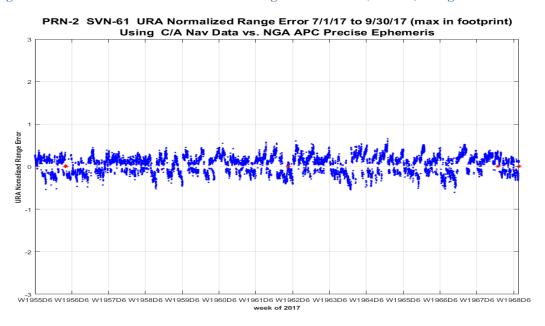



Figure 11-121 Timeline of URA Normalized Range Error PRN-3 (SVN-69) Using C/A Nav Data

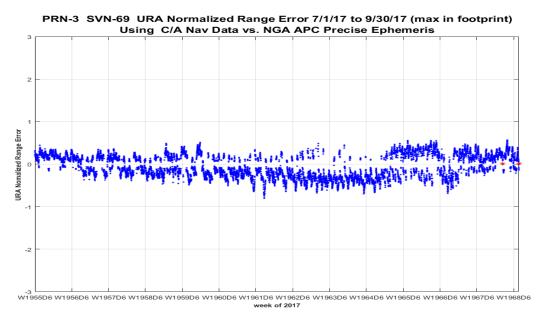



Figure 11-122 Timeline of URA Normalized Range Error PRN-5 (SVN-50) Using C/A Nav Data

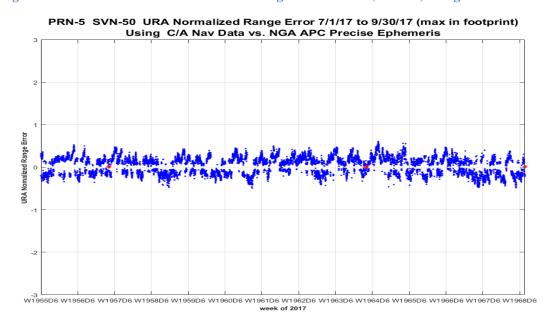



Figure 11-123 Timeline of IAURA Normalized Range Error PRN-5 (SVN-50) Using L2C CNAV Data

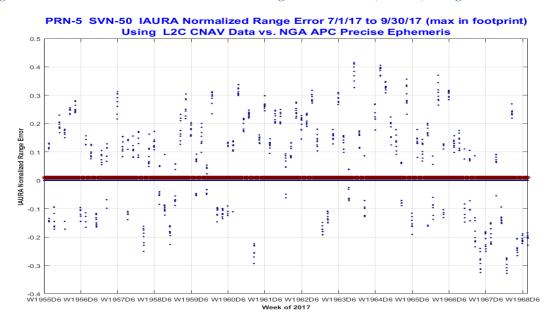



Figure 11-124 Timeline of URA Normalized Range Error PRN-6 (SVN-67) Using C/A Nav Data

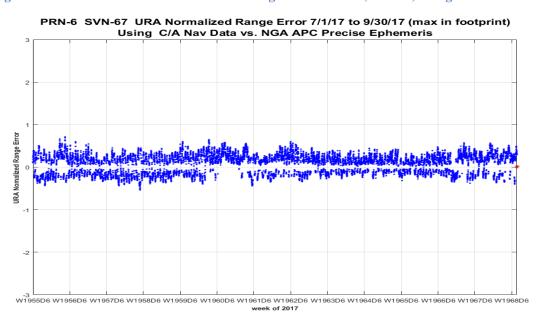



Figure 11-125 Timeline of IAURA Normalized Range Error PRN-6 (SVN-67) Using L2C CNAV Data

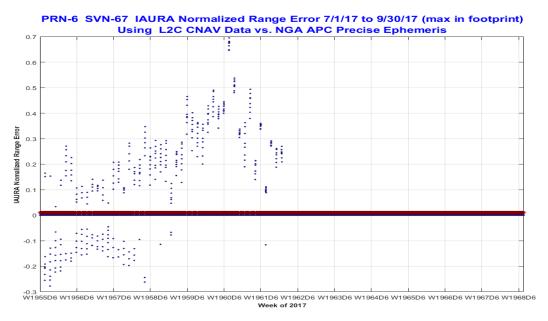



Figure 11-126 Timeline of URA Normalized Range Error PRN-7 (SVN-48) Using C/A Nav Data

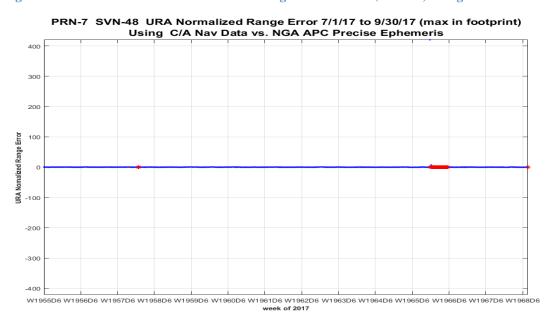



Figure 11-127 Timeline of IAURA Normalized Range Error PRN-7 (SVN-48) Using L2C CNAV Data

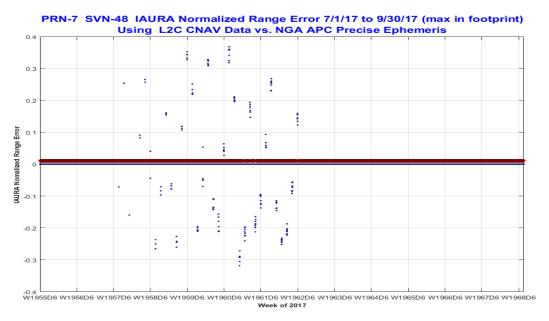



Figure 11-128 Timeline of URA Normalized Range Error PRN-8 (SVN-72) Using C/A Nav Data

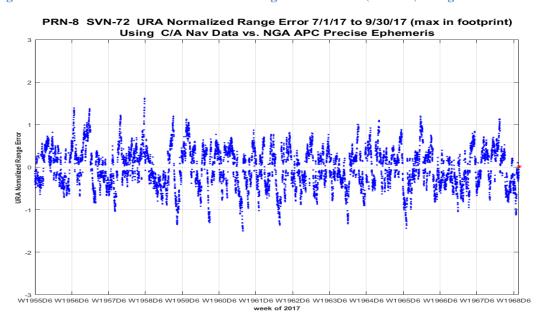



Figure 11-129 Timeline of IAURA Normalized Range Error PRN-8 (SVN-72) Using L2C CNAV Data

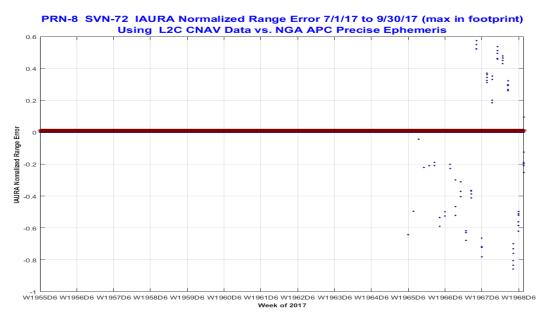



Figure 11-130 Timeline of URA Normalized Range Error PRN-9 (SVN-68) Using C/A Nav Data

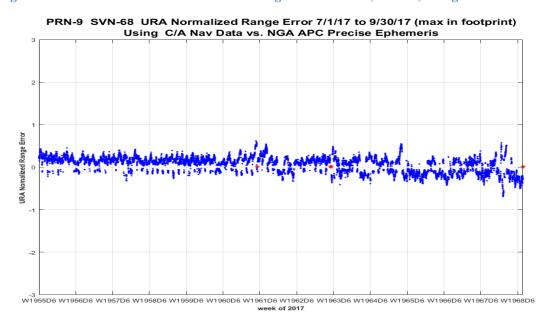



Figure 11-131 Timeline of IAURA Normalized Range Error PRN-9 (SVN-68) Using L2C CNAV Data

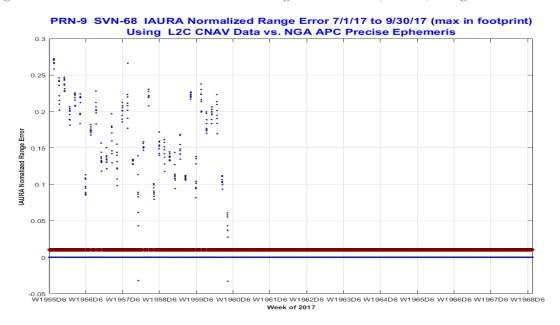



Figure 11-132 Timeline of URA Normalized Range Error PRN-10 (SVN-73) Using C/A Nav Data

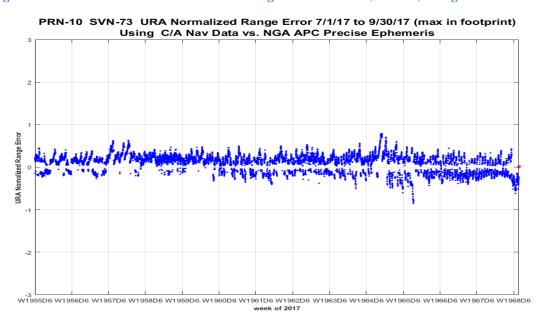



Figure 11-133 Timeline of IAURA Normalized Range Error PRN-10 (SVN-73) Using L2C CNAV Data

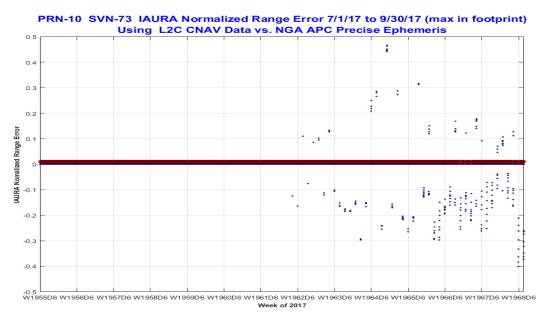



Figure 11-134 Timeline of URA Normalized Range Error PRN-11 (SVN-46) Using C/A Nav Data

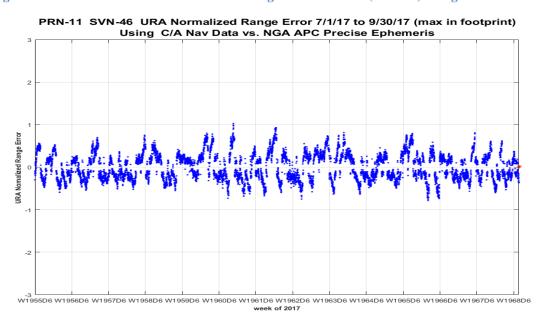



Figure 11-135 Timeline of URA Normalized Range Error PRN-12 (SVN-58) Using C/A Nav Data

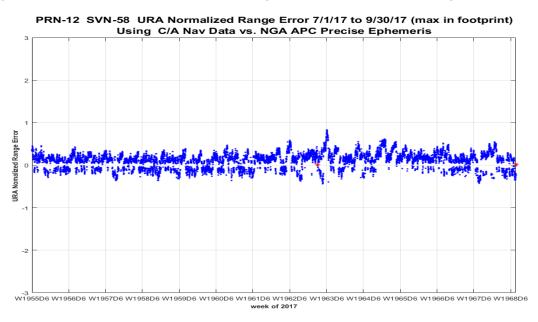



Figure 11-136 Timeline of IAURA Normalized Range Error PRN-12 (SVN-58) Using L2C CNAV Data

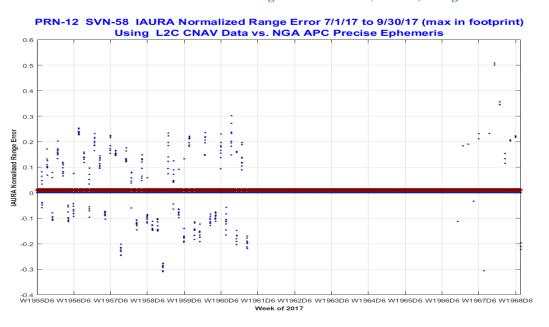



Figure 11-137 Timeline of URA Normalized Range Error PRN-13 (SVN-43) Using C/A Nav Data

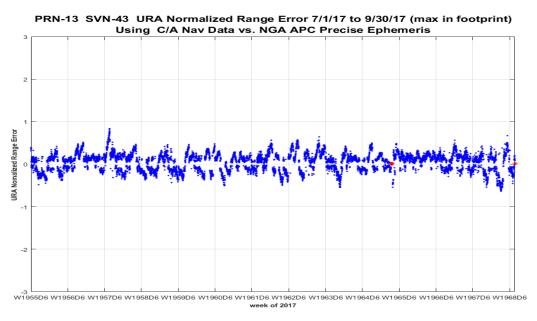



Figure 11-138 Timeline of URA Normalized Range Error PRN-14 (SVN-41) Using C/A Nav Data

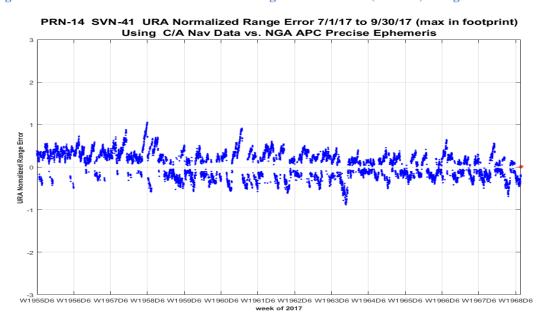



Figure 11-139 Timeline of URA Normalized Range Error PRN-15 (SVN-55) Using C/A Nav Data

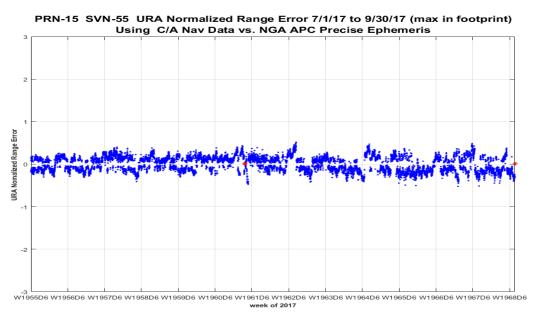



Figure 11-140 Timeline of IAURA Normalized Range Error PRN-15 (SVN-55) Using L2C CNAV Data

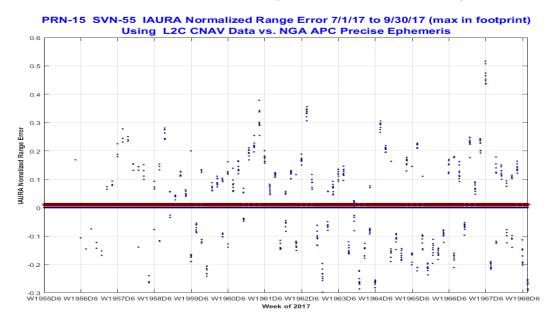



Figure 11-141 Timeline of URA Normalized Range Error PRN-16 (SVN-56) Using C/A Nav Data

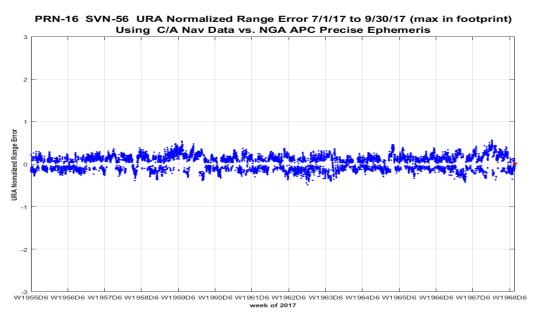



Figure 11-142 Timeline of URA Normalized Range Error PRN-17 (SVN-53) Using C/A Nav Data

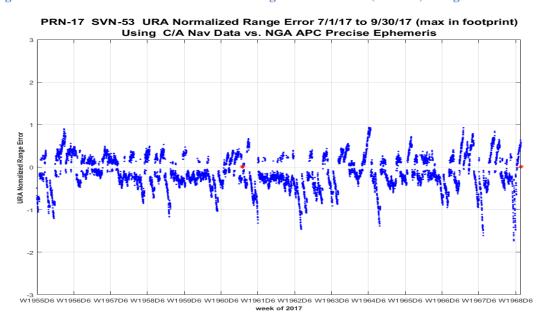



Figure 11-143 Timeline of IAURA Normalized Range Error PRN-17 (SVN-53) Using L2C CNAV Data

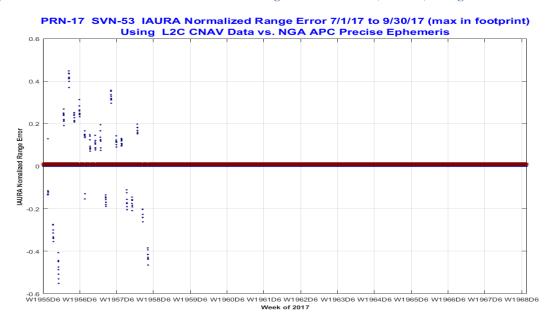



Figure 11-144 Timeline of URA Normalized Range Error PRN-18 (SVN-54) Using C/A Nav Data

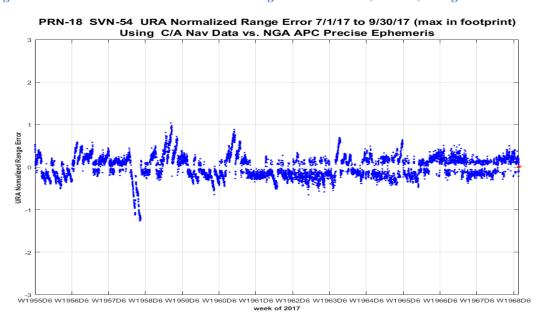



Figure 11-145 Timeline of URA Normalized Range Error PRN-19 (SVN-59) Using C/A Nav Data

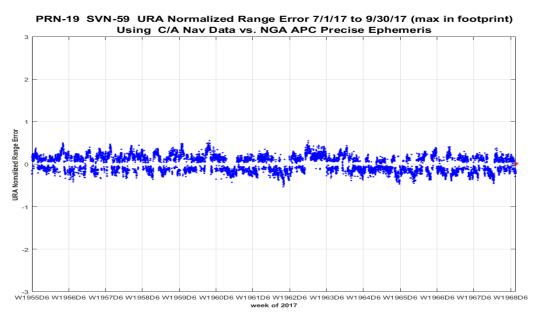



Figure 11-146 Timeline of URA Normalized Range Error PRN-20 (SVN-51) Using C/A Nav Data

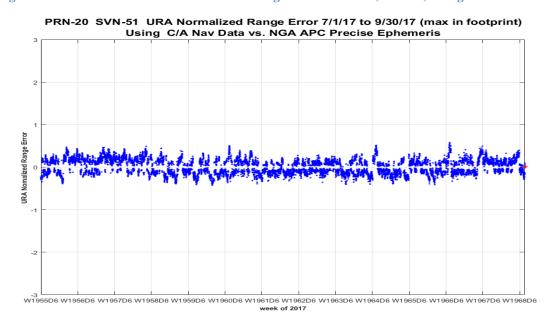



Figure 11-147 Timeline of URA Normalized Range Error PRN-21 (SVN-45) Using C/A Nav Data

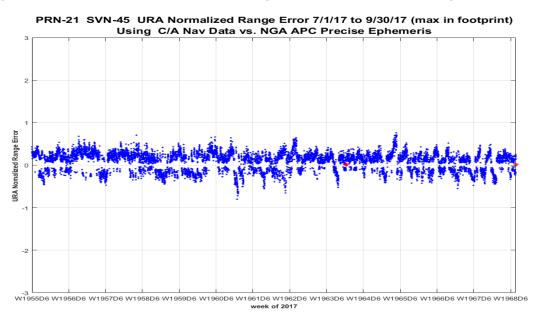



Figure 11-148 Timeline of URA Normalized Range Error PRN-22 (SVN-47) Using C/A Nav Data

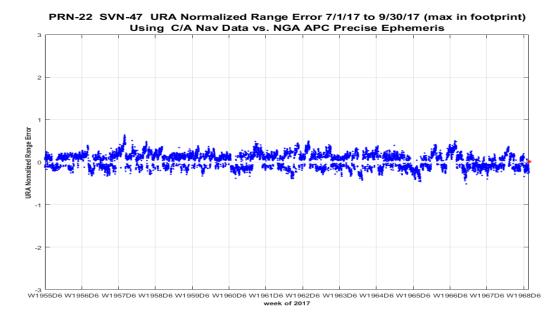



Figure 11-149 Timeline of URA Normalized Range Error PRN-23 (SVN-60) Using C/A Nav Data

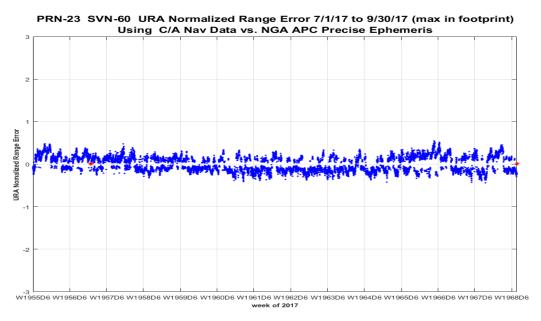



Figure 11-150 Timeline of URA Normalized Range Error PRN-24 (SVN-65) Using C/A Nav Data

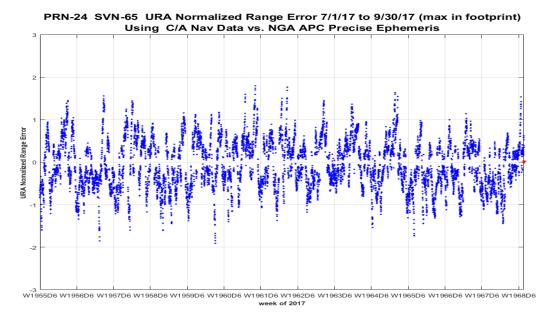



Figure 11-151 Timeline of IAURA Normalized Range Error PRN-24 (SVN-65) Using L2C CNAV Data




Figure 11-152 Timeline of URA Normalized Range Error PRN-25 (SVN-62) Using C/A Nav Data

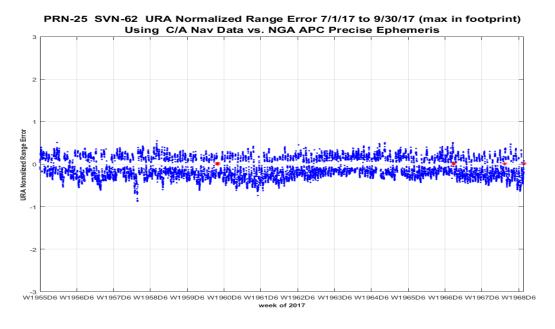



Figure 11-153 Timeline of IAURA Normalized Range Error PRN-25 (SVN-62) Using L2C CNAV Data

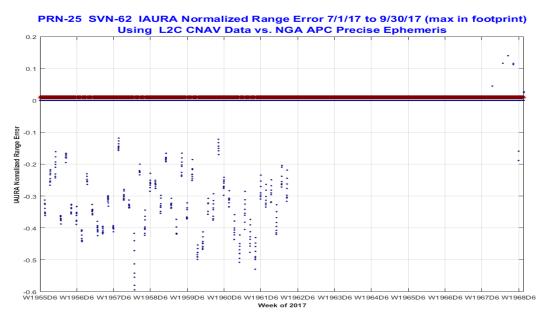



Figure 11-154 Timeline of URA Normalized Range Error PRN-26 (SVN-71) Using C/A Nav Data

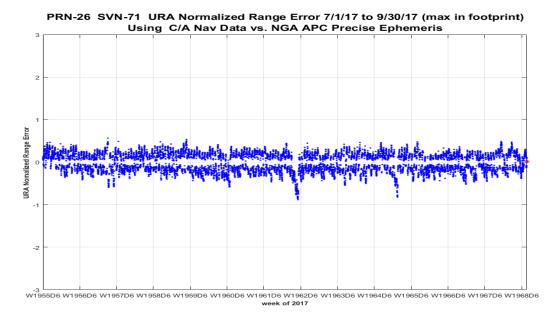



Figure 11-155 Timeline of IAURA Normalized Range Error PRN-26 (SVN-71) Using L2C CNAV Data

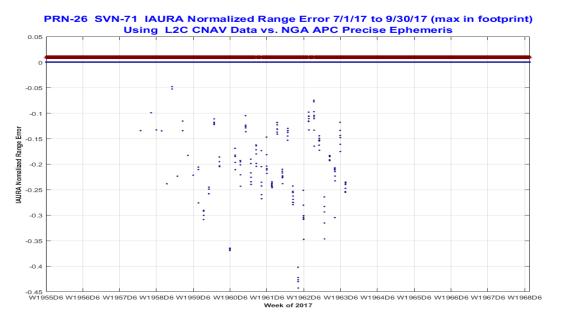



Figure 11-156 Timeline of URA Normalized Range Error PRN-27 (SVN-66) Using C/A Nav Data

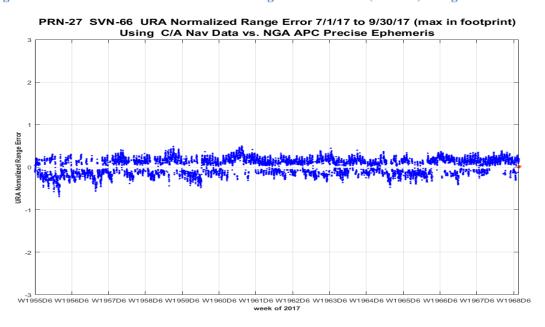



Figure 11-157 Timeline of IAURA Normalized Range Error PRN-27 (SVN-66) Using L2C CNAV Data

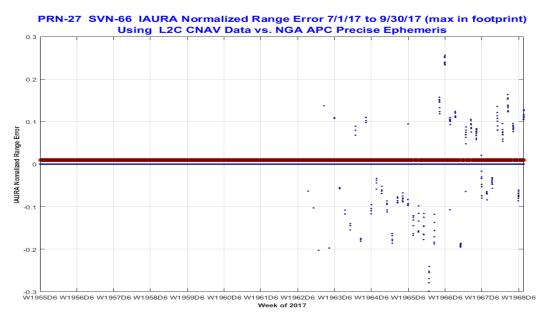



Figure 11-158 Timeline of URA Normalized Range Error PRN-28 (SVN-44) Using C/A Nav Data

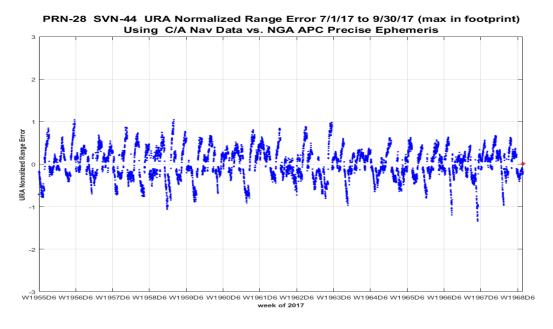



Figure 11-159 Timeline of URA Normalized Range Error PRN-29 (SVN-57) Using C/A Nav Data



Figure 11-160 Timeline of IAURA Normalized Range Error PRN-29 (SVN-57) Using L2C CNAV Data

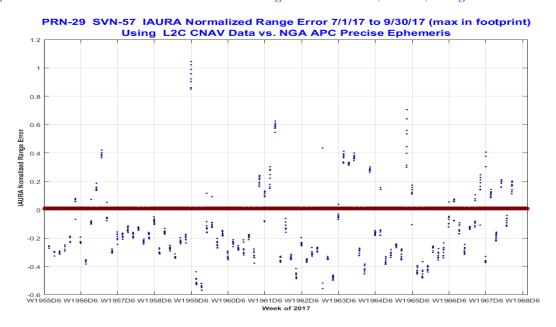



Figure 11-161 Timeline of URA Normalized Range Error PRN-30 (SVN-64) Using C/A Nav Data

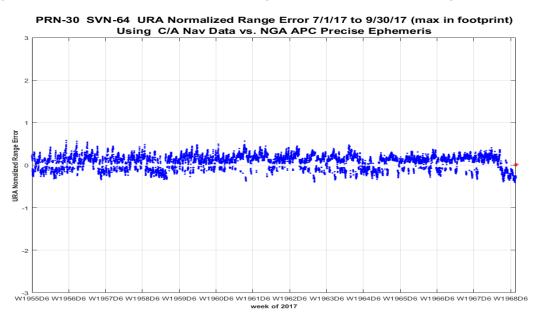



Figure 11-162 Timeline of IAURA Normalized Range Error PRN-30 (SVN-64) Using L2C CNAV Data

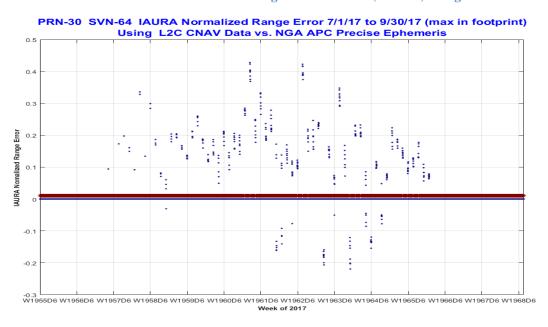



Figure 11-163 Timeline of URA Normalized Range Error PRN-31 (SVN-52) Using C/A Nav Data

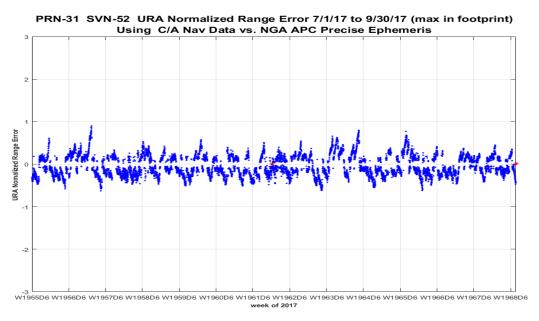



Figure 11-164 Timeline of URA Normalized Range Error PRN-32 (SVN-70) Using C/A Nav Data

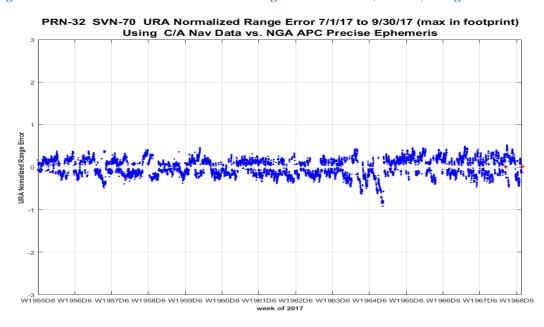
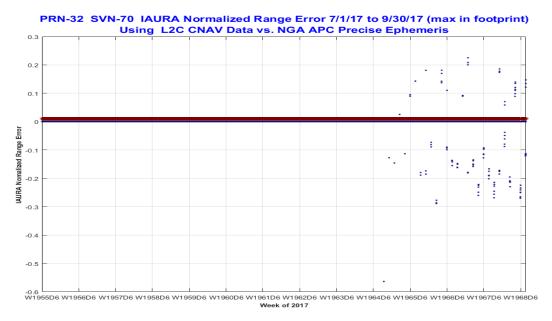




Figure 11-165 Timeline of IAURA Normalized Range Error PRN-32 (SVN-70) Using L2C CNAV Data

